
École Doctorale Paris-Est
Mathématiques & Sciences et Technologies
de l’Information et de la Communication

Thèse de doctorat
de l’Université Paris-Est

Domaine : Apprentissage Automatique

Présentée par
Shell Xu Hu

pour obtenir le grade de

Docteur de l’Université Paris-Est

Towards Efficient Learning of Graphical
Models and Neural Networks with

Variational Techniques

Soutenue publiquement le 19 décembre 2019
devant le jury composé de :

Guillaume Obozinski École des Ponts ParisTech Directeur de thèse
Nikos Komodakis École des Ponts ParisTech Directeur de thèse
Simon Lacoste-Julien Université de Montréal Rapporteur
Matthew Blaschko KU Leuven Rapporteur
Nathalie Peyrard INRA Toulouse Examinateur
Jakob Verbeek Inria Grenoble Examinateur

ii

École des Ponts ParisTech
LIGM-IMAGINE
6, Av Blaise Pascal - Cité Descartes
Champs-sur-Marne
77455 Marne-la-Vallée cedex 2
France

Université Paris-Est Marne-la-Vallée
École Doctorale Paris-Est MSTIC
Département Études Doctorales
6, Av Blaise Pascal - Cité Descartes
Champs-sur-Marne
77454 Marne-la-Vallée cedex 2
France

ii

Acknowledgments

The completion of this thesis would not have been possible without the support
and nurturing of an exhaustive list of people.

First of all, my deepest thanks are dedicated to my supervisors Guillaume
Obozinski and Nikos Komodakis. I am deeply indebted to both of them, who have
offered me so many good ideas but I was barely able to finish a tiny fraction of
them. Again, my heartily thanks to Guillaume, who has always been supportive,
insightful and constructive in providing advice when I was indulging in coming up
with new ideas, when my paper was rejected repeatedly, when I had difficulty in
decision-making, and so on and so forth.

I would like to warmly thank Simon Lacoste-Julien and Matthew Blaschko
for having reviewed this manuscript. I am also grateful to Nathalie Peyrard and
Jakob Verbeek for having accepted to be part of the jury.

Before 2015, I could not imagine that I would join the IMAGINE lab to
pursue a PhD. It turned out that this experience was way beyond my imagination.
Renaud Marlet along with Pascal Monasse, Bertrand Neveu, Chaohui Wang, Nikos
Komodakis, Guillaume Obozinski, Mathieu Aubry, Vincent Lepetit and David
Picard created such a thriving atmosphere with great work-life balance. I very
much appreciate the chance to closely work with Renaud and Mathieu, who were
my unofficial supervisors, and were particularly helpful in solving either research or
administrative problems. It is hard to describe how amazing it is when surrounded
by extremely friendly and smart colleagues. Therefore I would like to extend my
sincere thanks to the aforementioned senior members as well as young folks, such
as Bourki Amine (for joyful discussions on higher-order CRFs and the unborn
facade dataset), Abderahmane Bedouhene, Thomas Belos, Sophie Cohen-Bodénès,
Francois Darmon (for being the Nicest office mate), Martin de La Gorce, Théo
Deprelle, Rahima Djahel, Yuming Du, Benjamin Dubois, Laura Fernandez Julia,
Thibault Groueix, Mateusz Kozinski (for being the most Polish office mate),
Raghudeep Gadde, Spyros Gidaris (for all the ideas we had brainstormed in coffee-
breaks), Timothée Lacroix, Loïc Landrieu (for his perfect example of how to write
and present a great PhD thesis), Pierre-Alain Langlois, Zhe Liu, Francisco Vitor
Suzano Massa, Tom Monnier, Xuchong Qiu, Simon Roburin, Yohann Salaun,
Othman Sbai, Martin Simonovsky (for treating me as a “real” scientist), Xi
Shen (for all the fruitful discussions and lightspeed prototyping), Praveer Singh
(for collaborating on my “hopeless” ideas), Raphael Sulzer, Maria Vakalopoulou,
Marina Vinyes, Yang Xiao (for joining the last-minute-major-change submissions),
Sergey Zagoruyko (for answering my stupid deep learning questions and sharing
with me the latest breakthroughs) and Wenbin Zou.

I feel so lucky to spent one summer at Amazon Cambridge during my PhD.
The outcomes of that experience led to several chapters of this manuscript. I
am extremely thankful to Andreas Damianou, Pablo G. Moreno, Sungsoo Ahn
and Zhenwen Dai, with whom I closely collaborated. In particular, Andreas
and Pablo have been the most amazing mentors, who supplied me with their
relentless encouragement and ingenious suggestions throughout and after the

iii

internship. The best thing about the internship was the chance to meet the
coolest machine learning scientists from all around the world. I notably would
like to thank my friends Sebastian Flennerhag, Yu Chen, Brendan Avent, Joseph
Geumlek, Tom Diethe and Sungsoo Ahn for sharing and discussing exciting findings.
Besides, I would like to extend my gratitude to Akash Kumar, Aaron Klein, Kurt
Cutajar, Alexandra Gessner, Borja Balle, Javier Gonzalez, Vicky Schneider, Cliff
McCollum, Neil Lawrence and many other Amazon colleagues, whose help cannot
be overestimated.

This five-year scientific challenge was made possible by the financial support of
ENPC and CSTB, for which I sincerely acknowledge. Many thanks should go to
Brigitte Mondou, Sylvie Cach, Anna Zaverio, Mariam Sidibe, Jihed Hadroug, etc.
at ENPC and Sven Oesau, Julien Soula, Olivier Tournaire, etc. at CSTB.

Last but not least, I want to express special thanks to my family, my parents,
and especially, my wife Zhan, for her love and her unfailing support over the last
five years.

iv

v

Abstract

Probability theory offers a mathematical framework for quantifying the uncertainty
about the model and the data, forms an underpinning of many machine learning
systems. Comparing to deterministic models, the prediction of a probabilistic model
takes the form of a probability distribution over all possible values. However, it may
render the prediction computationally intractable. To overcome the computational
issue, variational techniques are often employed, where variational bounds are
used to approximate the original objectives, casting the original problem as an
optimization problem.

The primary goal of this thesis is to explore better variational formulations for
probabilistic graphical models and deep neural networks in terms of computational
efficiency or sample efficiency.

For learning discrete graphical models, we propose a new variational inference
algorithm for the dual problem of the maximum likelihood estimation, inspired by
the recent advances of stochastic variance reduction algorithms. Roughly speaking,
we obtain a concave optimization over a convex polytope, where each variable,
corresponding to a clique in the graph, is subject to the simplex constraint; besides,
the local consistency among cliques induces a set of equality constraints. We thus
propose an augmented Lagrangian formulation to solve this optimization problem.
Our algorithm, which can be interpreted as an inexact gradient descent for the
outer loop, requires only a fixed number of inner block-coordinate updates to
obtain a sufficiently good estimate of the gradient for the Lagrange multipliers.
We prove that the proposed algorithm enjoys a linear convergence in both the
dual and the primal, and compare it with state-of-the-art algorithms on three
applications.

Probability theory has a natural application to neural networks if we consider
the hidden activations and/or the network parameters as random variables. This
type of model is generally known as the Bayesian neural network, and which is
typically trained via the minimum description length (MDL) principle, corresponds
to formulate supervised learning as lossless compression. We propose an alternative
learning formulation based on the rate-distortion theory for lossy compression. In
a nutshell, we introduce a mutual information regularizer to control the amount
of information stored in the parameters with respect to any minibatch in the
train-set, and derive a variational upper bound on the mutual information yielding
an EM-like algorithm. Comparing to MDL with stochastic gradient descent, our
algorithm is more stable and can potentially achieve a better testing accuracy.

The same formulation can be applied to meta-learning, where the EM-like
algorithm can be derived from an empirical Bayes formulation and motivated

vi

from applying a hierarchical Bayes model to the dataset constituting a two-level
hierarchy. Recall that the idea behind meta-learning is learning to generalize across
tasks. The key difference is that we now restrain the mutual information between
the parameters of the model and the dataset associated with a particular task, for
which we take a variational upper bound and obtain a sum of local KL divergences
between the variational posterior and the true posterior of each task. We derive a
novel amortized variational inference that couples all the variational posteriors into
a meta-model, which consists of a synthetic gradient network and an initialization
network. Moreover, the combination of local KL divergences and synthetic gradient
network allows backpropagating information from unlabeled data, thereby attaining
better variational posteriors. We further provide a theoretical analysis to justify
our formulation in terms of the generalization performance and demonstrate its
superior performance on few-shot classification benchmarks.

The second part of this thesis is dedicated to the memory issue of over-
parameterized neural networks. To improve memory efficiency, we propose two
ideas briefly sketched as follows. The first idea, which is inspired by the information
bottleneck principle, makes use of the teacher-student framework, where an over-
parameterized teacher network is used as additional supervision for training the
thinner student network. The supervision is imposed by maximizing the mutual
information between selected pairs of activations, while the intractable mutual
information is approximated by a variational lower bound. Another idea comes
from an empirical observation that over-parameterized neural networks are robust
to symmetry constraints on network parameters, which is embarrassingly simple,
has a negligible effect on training and testing accuracy. Both ideas have been
extensively tested on standard benchmarks and compared with state-of-the-art
methods.

vii

Résumé

L’intelligence artificielle (IA), suggérée par son nom, est un type d’intelligence
distincte de l’intelligence naturelle (IN) appartient à l’homme et à l’animal. Cepen-
dant, l’intelligence est elle-même une boîte de mystères. Nous ne sommes pas près
de le comprendre de si tôt. Au fil des ans, les chercheurs en IA ont tenté de rendre
un système d’IA impossible à distinguer de celui de son frère IN. Le test de Turing,
conçu pour évaluer les systèmes d’IA proposés, incarne cette passion. À mesure
que la recherche sur l’IA progresse, la définition de l’IA évolue également avec le
temps. Le terme IA a été utilisé à l’origine pour désigner les systèmes informatiques
imitant IN. Dans son utilisation moderne, IA se réfère également à l’ensemble du
domaine qui étudie les machines intelligentes. En tant que domaine scientifique,
IA est née à la conférence de Dartmouth en 1956 et est devenue un domaine
interdisciplinaire associant informatique, statistiques, neurosciences, physique, etc.
Jordan (2019) a précisé que l’essentiel de ce que l’on appelle l’IA aujourd’hui est
ce qu’on appelle l’apprentissage automatique (ML) depuis plusieurs décennies.
ML est un terme moins mystérieux, car il s’agit d’un domaine qui se concentre
davantage sur les aspects techniques des systèmes d’intelligence artificielle.

Bien que la construction de systèmes d’intelligence artificielle ne nécessite pas
d’ingénierie inverse, s’inspirer de IN peut apporter des idées prometteuses. La
recherche en IA a depuis longtemps mis l’accent sur l’étude et la reproduction
partielle ou totale du mécanisme de l’IN. Les méthodes induites sont parfois
appelées méthodes inspirées du cerveau. Des exemples de ce type incluent divers
modèles informatiques, appelés réseaux de neurones artificiels (Rumelhart et al.
1986, LeCun et al. 1998, Maass 1997), qui imitent de manière lâche les neurones
biologiques. Cette famille de méthodes et de modèles est maintenant largement
développée et largement reconnue comme l’apprentissage profond (LeCun et al.
2015).

Comme Russell and Norvig (2009) l’ont expliqué, des «avions artificiels» ont eu
lieu lorsque les frères Wright et d’autres ont cessé d’imiter les oiseaux. Une autre
philosophie consiste à ne pas imiter IN, qui découle de formulations mathématiques
de machines à penser basées sur des concepts tels que la logique et la rationalité.
Ces formulations peuvent remonter au syllogisme Aristote et à l’algèbre de Boole.
Les exemples les plus représentatifs de ce type sont les méthodes logiques, telles
que la logique propositionnelle logique du et la premier ordre. Contrairement
aux réseaux de neurones artificiels, les modèles logiques sont plus intuitifs et
transparents du point de vue humaine. Ils sont capables d’intégrer la connaissance
du domaine sous la forme de formules logiques et de mener un raisonnement
mathématiquement correct d’une manière compréhensible pour l’homme. Au

viii

milieu des années 1965, la recherche sur l’IA sur ce type de méthodes était perçue
comme le paradigme dominant (Haugeland 1989), qui présente de nombreuses
applications remarquables, telles que le «general problem solver» de Newell and
Simon (1961) et le «advice taker» de McCarthy (1960). Ces réalisations font partie
des raisons pour lesquelles IA a attiré une telle attention dans les années soixante.

Cependant, les modèles logiques classiques souffrent du soi-disant problème de
qualification (Russell and Norvig 2009) en raison de leur nature déductive. Pour
traiter les exceptions dans le monde réel, une méthode doit prendre en compte
l’incertitude, qu’elle soit due à des observations partielles, à un environnement non
déterministe ou à une combinaison des deux. Il est maintenant bien connu que la
théorie des probabilités offre un cadre mathématiquement justifié pour quantifier
l’incertitude. En fait, la théorie des probabilités est une généralisation naturelle
de la logique (Jaynes 1996) sans faire référence au «hasard» ou à la «variable
aléatoire» contrairement à l’introduction classique de la théorie des probabilités
par Kolmogorov (1933). Cette ligne de recherche remonte à Laplace (1820), Keynes
(1921), Jeffreys (1939). Cox (1946) a donné une justification mathématique basée
sur quelques axiomes.

Les axes de recherche susmentionnés reposent apparemment sur différentes
philosophies et ont développé deux branches de l’IA, qui, en raison de leurs
caractéristiques principales, sont parfois qualifiées d’IA basée sur les données
et d’IA basée sur la connaissance. Intuitivement, le premier s’appuie sur des
approximateurs de fonctions générales (inspirés du cerveau) pour approximer les
mappages d’entrée-sortie sous-jacents des données, tandis que le second intègre
la connaissance humaine dans les modèles, indépendamment de tout ensemble
de données particulier. Certes, il n’existe pas de méthode purement axée sur les
données ou sur les connaissances. Même les réseaux de neurones ne peuvent pas
généraliser sans biais inductifs.

La théorie des probabilités offre un cadre élégant pour intégrer ces deux types
de méthodes en ce sens que les connaissances de haut niveau et les informations de
bas niveau sont modélisées sous forme de variables aléatoires avec des distributions
explicites ou implicites. Un exemple à cet égard est le modèle graphique probabiliste
(MGP) (Pearl 1988, Koller et al. 2009), qui prend en charge de manière inhérente le
raisonnement probabiliste tout en possédant une représentation de la connaissance
de graphe inspirée par des réseaux de neurones. Contrairement aux connexions
dans les réseaux de neurones, la structure des graphes dans un MGP est souvent
liée à une relation réelle ou à une abstraction réelle, ce qui permet une inférence et
un raisonnement efficace. Les exemples classiques de MGP incluent les modèles
de Markov cachés (Stratonovich 1965), l’allocation de Dirichlet latente (Blei
et al. 2003), les réseaux bayésiens (Pearl 1985), etc. Il existe également des
exemples ressemblant à des méthodes logiques ou à des réseaux de neurones.
Par exemple, le réseau logique de Markov (Richardson and Domingos 2006) est
une MGP dans laquelle des variables aléatoires sont associées à des propositions
logiques; Les réseaux de croyances profondes (Hinton 2009) et les machines de
Boltzmann restreintes profondes (Salakhutdinov and Hinton 2009) sont des MGP
dotés de structures graphiques en couches similaires à celles des réseaux de neurones

ix

profonds.
Comme chaque épée possède deux tranchants, le coût à payer pour la rigueur

mathématique de la quantification de l’incertitude est la calculabilité ou l’évolutivité.
équipés du cadre de probabilité, nous avons également introduit de nombreuses
quantités insolubles, telles que la valeur attendue, le dénominateur de la fonction
de densité de probabilité et la vraisemblance marginale, qui impliquent toutes le
calcul d’intégrales insolubles. Pour approcher de telles quantités, il existe deux
idées principales: la chaîne de Markov (MCMC) (Metropolis et al. 1953, Hastings
1970, Geman and Geman 1984) et l’inférence variationnelle (IV) (Peterson 1987,
Jordan et al. 1999, Blei et al. 2017). MCMC est basé sur une simulation de Monte
Carlo: pour tirer des échantillons de la distribution de probabilité cible, il construit
une chaîne de Markov telle que la distribution stationnaire de la chaîne de Markov
soit la distribution de probabilité cible; ces échantillons sont ensuite utilisés pour
approximer les intégrales avec des sommes déductibles. Bien que, par construction,
MCMC produise des estimations non biaisées par la loi de grand nombre, elle
souffre d’une lente convergence. L’inférence variationnelle, au contraire, sacrifie
l’exactitude pour la rapidité et pose l’inférence approximative comme un problème
d’optimisation, dans lequel une famille de distributions plus simples (c’est-à-dire,
des distributions de propositions) est d’abord posée, puis le membre le plus proche
de cette famille de la distribution cible est choisie en fonction d’une mesure de
divergence (par exemple, la divergence de Kullback-Leibler). Comparé à MCMC,
bien que présentant un biais irrémédiable, IV a tendance à être plus rapide et plus
évolutif pour des données volumineuses.

A propos de cette thèse

Dans cette thèse, je me concentrerai principalement sur l’inférence variationnelle
et les modèles probabilistes. En particulier, je couvrirai plusieurs projets auxquels
j’ai participé au cours de ma thèse concernant l’amélioration de l’efficacité des
systèmes IA / ML avec des techniques variationnelles. La thèse inclut deux
parties. Dans la première partie, l’efficacité des modèles probabilistes graphiques
est étudiée. Dans la deuxième partie, plusieurs problèmes d’apprentissage profond
sont examinés, qui sont liés à l’efficacité énergétique ou à l’efficacité des échantillons.
Je montrerai brièvement dans les paragraphes suivants pour chaque partie les
principaux problèmes que nous avons rencontrés et les solutions que nous avons
proposées pour un apprentissage automatique plus efficace.

Modèles graphiques probabilistes

Le premier problème abordé dans cette thèse est l’efficacité de calcul des MGP.
Comme dans de nombreux modèles probabilistes, les MGP souffrent d’un problème
de calcul intraitable. Plus précisément, l’probabiliste inférence et l’estimation
paramètre de vraisemblance maximale du MGP sont en général insolubles en raison
de la fonction de partition: pour calculer la valeur de la fonction ou son gradient
impliquent une intégrale sur tout l’espace échantillon, ce qui est onéreux en terme

x

de calcul, même dans le cas discret, la taille de l’espace échantillon augmente de
manière exponentielle avec l’augmentation du nombre de nœuds. En tant que tel,
l’inférence variationnelle est devenue une bête de somme pour les MGP. C’est aussi
parce que l’inférence variationnelle est un cadre général plutôt qu’un algorithme
particulier. En choisissant différentes distributions de proposition, l’inférence vari-
ationnelle peut prendre différentes formes. Compte tenu des idées de la mécanique
stochastique (Parisi 1988), la formulation variationnelle de champ moyen et de
Bethe sont les exemples classiques largement utilisés dans les MGP (Wainwright
2008). En nous concentrant sur la formulation variationnelle convexifiée de Bethe
(Wainwright et al. 2005b, Globerson and Jaakkola 2007b, Meshi et al. 2009), nous
identifions que son dual problème est fortement concave mais non lisse, où le
non-lissé provient des contraintes induites par couplage de marginalisation entre les
variables duales. Nous proposons un nouvel algorithme inspiré du développement
algorithmique de l’optimisation convexe pour la minimisation du risque empirique
(Roux et al. 2012, Johnson and Zhang 2013, Defazio et al. 2014a, Shalev-Shwartz
and Zhang 2014). En particulier, nous étendons l’algorithme stochastique à dual
coordonnée (SDCA) (Shalev-Shwartz and Zhang 2014) et la méthode de mul-
tiplicateur lagrangien augmenté (ADMM) (Boyd et al. 2011) pour le problème
dual. Comme l’analyse classique de convergence d’ADMM ne s’applique pas aux
problèmes convexes incluant plus de trois blocs de variables (Chen et al. 2016a),
nous effectuons une nouvelle analyse de convergence pour notre algorithme basée
sur l’analyse par rapport à des gradients inexacts pour les problèmes de minmax.
Nous montrons également que la séquence de solutions primales et la séquence de
solutions dual générées par notre algorithme bénéficient d’une convergence linéaire,
ce qui est confirmé empiriquement par trois expériences représentatives.

Apprentissage profond

Dans la deuxième partie de la thèse, nous nous concentrons sur apprentissage
profond. Pour les réseaux de neurones profonds, le problème de l’apprentissage
est généralement un problème d’optimisation non convexe à grande échelle, dans
lequel ni la valeur objective ni le gradient ne peuvent être calculés efficacement.
Rappelez-vous qu’un problème d’optimisation non convexe est considéré comme
extrêmement difficile car le problème peut avoir plusieurs minima locaux et points
de selle. Cependant, lorsqu’un réseau de neurones est sur-paramétré, par exemple en
augmentant la profondeur et / ou la largeur du réseau, un algorithme d’optimisation
simple tel que la descente de gradient stochastique (SGD) (Robbins and Monro
1951) ou ses variantes telles que AdaGrad (Duchi et al. 2011), ADAM (Kingma
and Ba 2014) peuvent trouver des optima globaux dans le cas de la classification
d’images supervisées (Zhang et al. 2016). De plus, les résultats empiriques de
Hinton et al. (2012), He et al. (2016a), Zagoruyko and Komodakis (2016c) montrent
que les réseaux sur-paramétrisés sont moins enclins à overfitting et atteignent
souvent de meilleures performances de généralisation. Ce phénomène a été étudié
par de nombreux chercheurs théoriques. Depuis, quelques explications ont été
publiées, par exemple la conjecture des minima plats de Keskar et al. (2016), Wu

xi

et al. (2017), les idées de PAC-Bayes de Dziugaite and Roy (2017), Zhou et al.
(2018), Pérez et al. (2018) et la perspective de la théorie de l’information de Tishby
and Zaslavsky (2015), Achille and Soatto (2017).

Bien que les réseaux sur-paramétrés semblent fonctionner bien dans la pra-
tique, le sur-paramétrage pose deux problèmes: l’inefficacité mémoire / énergie
et l’inefficacité de l’échantillon. Le premier problème devrait être attribué au
nombre considérable de paramètres. Notez qu’en raison de la nature hautement
parallélisable des réseaux de neurones, la sur-paramétrisation peut ne pas poser
de problème en termes de vitesse. Cependant, le nombre de paramètres à stocker
dans la mémoire et le nombre d’opérations à effectuer lors des passes en avant
et en arrière posent un problème sérieux lors de l’application de l’apprentissage
profond à des domaines plus vastes avec des ressources limitées. Le deuxième
problème est plus fondamental car il est notoirement connu que les réseaux de
neurones ont faim de données. Des résultats à la fois théoriques et empiriques
(Cybenko 1989b, Raghu et al. 2017, Zhang et al. 2016) montrent que les réseaux de
neurones sont capables d’exprimer un large éventail de fonctions. Selon la théorie
de l’apprentissage classique (Valiant 1984), cela implique que la complexité du
modèle peut être extrêmement élevée, de même que la complexité de l’échantillon.
En d’autres termes, pour obtenir une petite erreur de test, nous aurons besoin d’un
grand nombre de données de formation. Néanmoins, dans de nombreux cas, la taille
des données de formation ne répond pas à cette condition en raison de problèmes
de distribution de données à grande échelle ou de problèmes de confidentialité. Ces
deux problèmes ne sont évidemment pas isolés. Notre objectif ultime est de former
un petit réseau sur un petit jeu de données, tout en offrant des performances
comparables. À cette fin, plusieurs ingrédients du système d’apprentissage profond
devraient être révisés.

Le premier ingrédient que nous étudions est la régularisation, qui consiste à
remodeler le problème d’apprentissage afin d’éviter le overfitting. En apprentissage
profond, les régulateurs traditionnels tels que le weight decay (c.-à-d. La pénalité
de L2) sont moins efficaces que les dropout (Srivastava et al. 2014) et la batch
normalisation (Ioffe and Szegedy 2015a), qui ont tous deux une interprétation
bayésienne (Kingma et al. 2015, Teye et al. 2018). En fait, de nombreuses tech-
niques de régularisation correspondent à l’imposition de connaissances préalables
d’un point de vue bayésien. Cependant, il est difficile de savoir quelle forme de con-
naissance préalable convient à un apprentissage profond. À la lumière de minimum
description length (MDL) interprétation des réseaux de neurones (Rissanen 1978,
Hinton and Van Camp 1993), qui définit l’apprentissage comme une compression
sans perte, nous empruntons une autre voie pour introduire l’antérieur comme
terme de régularisation. compression avec perte des données. Plus précisément,
nous prenons l’information mutuelle entre l’échantillon bootstrap et les poids
neural-net comme terme de régularisation. L’algorithme proposé ressemble à
l’algorithme classique de Blahut-Arimoto pour la compression avec perte (Blahut
1972, Arimoto 1972), dans lequel nous calculons une variation postérieure locale
pour chaque échantillon bootstrap, puis nous l’utilisons pour mettre à jour la
composition postérieure agrégée. Contrairement aux méthodes MDL (Hinton and

xii

Van Camp 1993, Graves 2011, Blundell et al. 2015), nous utilisons l’agrégation
des postérieurs pour calculer la distribution prédictive plutôt que de prendre la
variation postérieure. De manière empirique, notre méthode présente certaines
propriétés intéressantes par rapport aux méthodes conventionnelles MDL.

L’efficacité de l’échantillon peut être obtenue dans une configuration multi-tâche
spéciale, dans laquelle les tâches partagent certaines caractéristiques communes.
Le problème est appelé méta-apprentissage et est généralement résolu par des
mécanismes d’apprentissage (Vinyals et al. 2016, Ravi and Larochelle 2016, Finn
et al. 2017, Snell et al. 2017, Mishra et al. 2017, Gidaris and Komodakis 2018).
étant donné que chaque tâche contient ses propres jeux de données, l’ensemble des
données fournies dans le méta-apprentissage est une hiérarchie à deux niveaux de
jeux de données. Nous considérons donc une bayésienne hiérarchique formulation
comprenant deux niveaux de variables latentes, les variables latentes du premier
niveau correspondant aux paramètres de chaque tâche et la variable latente du
second niveau correspondant à l’hyper-paramètre partagé entre les tâches. Nous op-
tons pour approximer la partie postérieure de l’hyper-paramètre par une estimation
ponctuelle, ce qui conduit à la méthode dite de Bayes empirique. Il se trouve que
le régularisateur d’informations mutuelles susmentionné apparaît dans la ELBO
de la log-vraisemblance marginale, mais cette fois nous obtenons une information
mutuelle entre les pondérations et les données associées à une tâche. Notez que,
dans Bayes empiriques, nous traitons les poids individuels comme des échantillons
de la même variable aléatoire. Enfin, nous déduisons une inférence variationnelle
amortie qui couple toutes les postérieures variationnelles locales (une pour chaque
échantillon du paramètre) dans un méta-modèle, qui consiste en un réseau de
gradient synthétique et un réseau d’initialisation. Nos résultats empiriques sur le
repère mini-ImageNet pour la classification épisodique en few-shot surpassent de
manière significative les méthodes de pointe antérieures.

Un excellent travail proposé par Ba and Caruana (2014), Hinton et al. (2015)
s’est avéré utile pour améliorer à la fois l’efficacité énergétique et l’efficacité
d’échantillonnage de l’apprentissage profond (Yim et al. 2017, Zagoruyko and
Komodakis 2016b), ce qui est réalisé en forçant le réseau de neurones (c’est-à-dire
l’étudiant) à imiter un réseau de neurones d’enseignants pré-formés. Ce travail est
important car nous pouvons adapter le réseau d’étudiants à une taille suffisamment
petite sans sacrifier la performance (Furlanello et al. 2018). Il est à noter que,
sans transfert de connaissances, la formation des petits réseaux a tendance à être
underfitting et que l’optimisation pourrait être beaucoup plus difficile que celle de
réseaux sur-paramétrés. De plus, à condition que le réseau d’enseignants soit formé
sur un jeu de données source à grande échelle (par exemple, ImageNet), le transfert
de connaissances enseignant-élève offre un cadre naturel pour l’apprentissage par
transfert. Cela étant dit, les travaux existants sur le transfert de connaissances
enseignant-élève exigent que le réseau d’élèves soit suffisamment similaire au
réseau d’enseignants. Cependant, aucune justification mathématique n’est donnée
pour expliquer le mécanisme derrière le cadre enseignant-élève. Inspirés par
l’interprétation de information bottleneck de l’apprentissage profond (Tishby
and Zaslavsky 2015), où l’apprentissage est présenté comme une optimisation

xiii

minimisant l’information mutuelle entre la représentation latente et l’entrée, tout
en maximisant l’information mutuelle entre la représentation latente et l’étiquette,
nous proposons de maximiser l’information mutuelle entre la représentation de
l’enseignant et celle de l’élève. Pour incorporer ce terme d’information mutuelle
négatif en tant que perte supplémentaire, nous utilisons une borne inférieure
variationnelle avec une hypothèse gaussienne. Nous comparons notre méthode avec
les méthodes existantes de transfert de connaissances pour les tâches de distillation
et de transfert de connaissances et montrons que notre méthode surperforme
systématiquement les méthodes existantes. Nous démontrons en outre les avantages
de notre méthode sur le transfert de connaissances entre architectures de réseaux
hétérogènes en transférant les connaissances d’un réseau de neurones à convolution
(CNN) à un perceptron multicouche (MLP) sur CIFAR-10.

Le dernier travail de cette thèse était dû à une découverte empirique: les
réseaux de neurones profonds sont robustes aux contraintes de symétrie imposées
aux poids. Nous proposons plusieures techniques de symétrisation et montrons
empiriquement que ces techniques sont très simples et universellement applicables
à presque tous les réseaux sur-paramétrés sans nécessiter de réglage précis en
post-traitement et que, en fonction de la taille du réseau, la symétrie ne peut
avoir que peu effet négatif sur le réseau au terme de précision. Par exemple, notre
ResNet-101 symétrisé a presque 25% moins de paramètres que sa version d’origine,
et introduit une perte de précision de seulement 0,2% sur ImageNet. En tant
qu’application, il peut être utilisé pour réduire les besoins en mémoire des réseaux
de neurones avec un coût de calcul négligeable au moment de la formation.

xiv

Contents xv

Contents

Acknowledgments ii

Abstract v

Résumé vii

Contents xv

Introduction 1

1 Background: Convex Optimization and Information Theory 9
1.1 Convex Optimization . 10
1.2 Information Theory . 13
1.3 Rate-distortion theory . 15

2 Introduction to Probabilistic Graphical Models 21
2.1 Introduction . 22
2.2 Models . 23
2.3 Inference . 26

2.3.1 Marginal inference . 28
2.3.2 MAP inference . 36

2.4 Learning . 38
2.4.1 Maximum likelihood estimation of exponential family . . . 39
2.4.2 Structured output learning 39

2.5 Conclusion . 47

3 SDCA-Powered Inexact Dual Augmented Lagrangian Method for
Fast CRF Learning 49
3.1 Introduction . 50
3.2 Related Work . 50
3.3 CRF Learning . 51

3.3.1 CRF as exponential family 52
3.4 Relaxed Formulations . 53

3.4.1 Classical local polytope relaxation 54
3.4.2 A dual augmented Lagrangian 54
3.4.3 Gini entropy surrogate . 55

3.5 Algorithm . 56
3.6 Convergence Analysis . 57

xvi

3.6.1 Conditions for global linear convergence 57
3.6.2 Convergence results with SDCA 59
3.6.3 Discussion . 60

3.7 Experiments . 60
3.7.1 Setup . 60
3.7.2 Results . 62

3.8 Conclusion . 63

Appendices 65
3.A Loss-Augmented CRF . 65
3.B Derivations of dual, and relaxed primal and dual objectives 66

3.B.1 Derivation of the dual objective D(µ) 66
3.B.2 Derivation of an extended primal P̃ρ(w, δ, ξ) 66
3.B.3 Interpretation as Moreau-Yosida smoothing 67
3.B.4 Duality gaps and representer theorem 68
3.B.5 Comparison with State-of-the-Art Structured Learning Meth-

ods . 69
3.C Gini Oriented Tree-Reweighted Entropy 70
3.D Proof of Theorem 3.6.1 and associated Corollaries 72

3.D.1 Smoothness of d(ξ) . 72
3.D.2 Associated lemmas for Theorem 3.6.1 73
3.D.3 Proof of Theorem 3.6.1 . 75
3.D.4 Proofs of Corollary 3.6.2 and Corollary 3.6.3 76
3.D.5 Proofs of Corollaries 3.6.4 and Corollary 3.6.5 78

3.E Convergence results with SDCA 79
3.E.1 Proof of Propositions 3.6.7 and 3.6.8 83

3.F Notation summary . 84

4 A Survey on Over-Parameterization in Deep Learning: Compres-
sion and Generalization 87
4.1 Introduction . 88
4.2 Deep Network Architectures . 90
4.3 Memory and Energy Issues with Over-Parameterized DNNs . . . 93
4.4 Model Compression Approaches 94
4.5 Towards Understanding Generalization via Compression 98

4.5.1 The generalization puzzle 99
4.5.2 Sharpness: the bridge between compressibility and general-

ization . 102
4.5.3 MDL: a lossless-compression-induced supervised learning

framework . 104
4.5.4 Information bottleneck: a lossy-compression-induced super-

vised learning framework 107
4.6 Transferring Knowledge from Over-Parameterized Models 111
4.7 Conclusion . 112

xvii

5 beta-BNN: A Rate-Distortion Perspective on Bayesian Neural
Networks 113
5.1 Supervised learning via lossy compression 114
5.2 Approximate Blahut-Arimoto Algorithm 116
5.3 Experiments . 117
5.4 Discussion . 118

6 Empirical Bayes Transductive Meta-Learning with Synthetic Gra-
dients 119
6.1 Introduction . 120
6.2 Meta-learning with transductive inference 122

6.2.1 Empirical Bayes model . 122
6.2.2 Amortized inference with transduction 123

6.3 Unrolling exact inference with synthetic gradients 124
6.4 Generalization analysis of empirical Bayes via the connection to

information bottleneck . 126
6.5 Experiments . 129

6.5.1 Few-shot classification . 129
6.5.2 Zero-shot regression: spinning lines 132
6.5.3 Zero-shot classification: unsupervised multi-source domain

adaptation . 133
6.6 Conclusion . 134

Appendices 135
6.A Proofs . 135
6.B Importance of synthetic gradients 137
6.C Varying the size of the query set 137

7 Variational Information Distillation for Knowledge Transfer 139
7.1 Introduction . 140
7.2 Variational information distillation (VID) 142

7.2.1 Algorithm formulation . 144
7.2.2 Connections to existing works 145

7.3 Experiments . 147
7.3.1 Knowledge distillation . 148
7.3.2 Transfer learning . 150
7.3.3 Knowledge transfer from CNN to MLP 152

7.4 Conclusion . 153

8 Exploring Weight Symmetry in Deep Neural Networks 155
8.1 Introduction . 156
8.2 Symmetric reparameterizations 158

8.2.1 Motivation . 158
8.2.2 Soft constraints . 159
8.2.3 Hard constraints . 159
8.2.4 Combining with other methods 162

xviii

8.3 Implementations of block symmetry 162
8.3.1 Imposing symmetry in convolutional neural networks . . . 162
8.3.2 Imposing symmetry in recurrent neural networks 163

8.4 Experiments . 163
8.4.1 CIFAR experiments . 164
8.4.2 ImageNet experiments . 169
8.4.3 Language modeling . 170

8.5 Conclusion . 171

Conclusion 173

Bibliography 177

1

Introduction

Artificial intelligence (AI), suggested by its name, is a type of intelligence dis-
tincted from natural intelligence (NI) appearing in humans and animals. However,
intelligence is itself a chamber of mysteries. We are not close to understanding it
any time soon. Over the years, AI researchers attempted to make an AI system
indistinguishable from that of its NI sibling. The Turing test, which is designed to
evaluate proposed AI systems, epitomizes this passion. As AI research advances,
the definition of AI is also evolving over time. The term AI was originally used to
refer to the computer systems mimicking NI. In its modern usage, AI also refers
to as the whole field that studies intelligent machines. As a scientific field, AI was
born at the Dartmouth conference in 1956 and has become an interdisciplinary
field involving computer science, statistics, neuroscience, physics and so on. Jordan
(2019) clarified that most of what is being called AI today is what has been called
machine learning (ML) for the past several decades. ML is a less mysterious term
as it is a field that focuses more on the mathematical and engineering aspects of
AI systems.

While building an AI system does not necessarily require reverse engineering,
drawing inspirations from NI can bring promising ideas. AI research has a long
history of emphasis on studying and reproducing partially or entirely the mechanism
of NI. The induced methods are sometimes called brain-inspired methods. Examples
of this kind include a variety of computational models, called artificial neural
networks (Rumelhart et al. 1986, LeCun et al. 1998, Maass 1997), which loosely
imitate biological neurons. This family of methods and models is now largely
developed and widely recognized as deep learning (LeCun et al. 2015).

As argued by Russell and Norvig (2009), “artificial flights” were made when
the Wright brothers and others stopped imitating birds. A different philosophy is
to avoid mimicking NI, which stems from mathematical formulations of thinking
machines based on concepts such as logic and rationality. These formulations can
date back to Aristotle’s syllogism and Boolean algebra. The most representative
examples of this kind are logical methods, such as propositional logic and first-order
logic. Unlike artificial neural networks, logical models are more intuitive and
transparent from a human perspective. They are able to incorporate domain
knowledge in the form of logical formulas and conduct mathematically sound
reasoning in a human-understandable way. In the mid-1965s, AI research on this
kind of methods was perceived as the dominant paradigm (Haugeland 1989), which
has many remarkable applications, such as the general problem solver by Newell
and Simon (1961) and the advice taker by McCarthy (1960). These achievements
were part of the reasons why AI drew so much attention in the 1960s.

2

However, classical logical models suffer from the so-called qualification problem
(Russell and Norvig 2009) due to their deductive nature. To handle exceptions
in the real world, a method must take into account uncertainty, whether due to
partial observations, non-deterministic environments, or a combination of both.
It is now well known that probability theory offers a mathematically justified
framework for quantifying uncertainty. In fact, probability theory is a natural
generalization of logic (Jaynes 1996) without making reference to “chances” or
“random variables” in contrast to the classical introduction of probability theory
by Kolmogorov (1933). This line of research dates back to Laplace (1820), Keynes
(1921), Jeffreys (1939). A mathematical justification was given by Cox (1946)
based on a few axioms.

The aforementioned lines of research are apparently based on different philoso-
phies and have developed two branches of AI, which, due to their main characteris-
tics, are sometimes labeled as data-driven AI and knowledge-driven AI respectively.
Intuitively, the former relies on general (brain-inspired) function approximators to
approximate the underlying input-output mappings of the data, while the latter
incorporates human knowledge into the models independent of any particular
dataset. Certainly, there is no pure data-driven or knowledge-driven method. Even
neural networks cannot generalize without inductive biases.

Probability theory offers an elegant framework to integrate these two kinds of
methods in the sense that both high-level knowledge and low-level information
are modeled as random variables with either known or implicit distributions.
An example in this regard is the probabilistic graphical model (PGM) (Pearl
1988, Koller et al. 2009), which inherently supports probabilistic reasoning while
possesses a graph knowledge representation inspired by neural networks. Unlike
the connections in neural networks, the graph structure in a PGM is often linked
to a real-life relationship or its abstraction in the real world, which in turn enables
efficient inference and reasoning. Classical examples of PGMs include hidden
Markov models (Stratonovich 1965), latent Dirichlet allocation (Blei et al. 2003),
Bayesian networks (Pearl 1985) etc. There are also examples that resemble logical
methods or neural networks. For instance, Markov logic network (Richardson and
Domingos 2006) is a PGM in which random variables are associated with logical
propositions; deep belief networks (Hinton 2009) and deep restricted Boltzmann
machines (Salakhutdinov and Hinton 2009) are PGMs with layered graph structures
which are similar to that of deep neural networks.

As every sword has two edges, the price to pay for the mathematical rigorousness
of uncertainty quantification is computability or scalability. Equipped with the
probability framework, we also introduced many intractable quantities, such as
the expected value, the denominator of a probability density function, and the
marginal likelihood alike, which all involve computing intractable integrals. To
approximate such quantities, there are two mainstream ideas: Markov Chain Monte
Carlo (MCMC) (Metropolis et al. 1953, Hastings 1970, Geman and Geman 1984)
and variational inference (VI) (Peterson 1987, Jordan et al. 1999, Blei et al. 2017).
MCMC is based on Monte Carlo simulation: to draw iid samples from the target
probability distribution, it constructs a Markov chain such that the stationary

3

distribution of the Markov chain is the target probability distribution; these
samples are then used to approximate the integrals with tractable sums. Although
by construction, MCMC produces unbiased estimates by the strong law of large
numbers, it suffers from a slow convergence to the stationary. Variational inference,
on the other hand, sacrifices exactness for speed, and casts the approximate
inference as an optimization problem, in which a family of simpler distributions
(i.e., proposal distributions) is first posited, and then the closest member of that
family to the target distribution is chosen with respect to some divergence measure
(e.g., the Kullback-Leibler divergence). Compared with MCMC, although being
irredeemably biased, VI tends to be faster and more scalable to large data.

About this thesis

In this thesis, I will mainly focus on variational inference and probabilistic models.
In particular, I will cover several projects that I have participated in during my
PhD about improving the efficiency of AI/ML systems with variational techniques.
The thesis consists of two parts. In the first part, the computational efficiency
of probabilistic graphical models is studied. In the second part, several problems
in deep learning are investigated, which are related to either energy efficiency or
sample efficiency. I will briefly show in the next paragraphs the main problems
we have encountered and the solutions we have proposed towards more efficient
machine learning.

Probabilistic graphical models

The first problem considered in this thesis is the computational efficiency of PGMs.
As in many probabilistic models, PGMs suffer from computational intractabil-
ity issue. Specifically, probabilistic inference and maximum likelihood parameter
estimation of PGMs are in general intractable due to the partition function: to
compute the function value or its gradient involve an integral over the entire sample
space, which is computationally expensive since, even for the discrete case, the size
of the sample space grows exponentially as the number of nodes increasing. As
such, variational inference has become a workhorse for PGMs. This is also because
variational inference is a general framework rather than a particular algorithm.
By choosing different proposal distributions, variational inference can take differ-
ent forms. Along with the insights from stochastic mechanics (Parisi 1988), the
mean-field variational formulation and the Bethe variational formulation are the
conventional examples widely used in PGMs (Wainwright 2008). Focusing on the
convexified Bethe variational formulation (Wainwright et al. 2005b, Globerson and
Jaakkola 2007b, Meshi et al. 2009), we identify that its dual problem is strongly
concave but non-smooth, where the non-smoothness comes from the constraints
induced by marginalization coupling between the dual variables. We propose a
new algorithm inspired by the algorithmic development on convex optimization
for empirical risk minimization (Roux et al. 2012, Johnson and Zhang 2013, De-
fazio et al. 2014a, Shalev-Shwartz and Zhang 2014). In particular, we extend the
stochastic dual coordinate ascent (SDCA) algorithm (Shalev-Shwartz and Zhang

4

2014) and the augmented Lagrangian method of multipliers (ADMM) (Boyd et al.
2011) for the dual problem. Since the classical convergence analysis of ADMM
does not hold for convex problems involving more than three blocks of variables
(Chen et al. 2016a), we conduct a new convergence analysis for our algorithm based
on the analysis of inexact gradients for min-max problems. We also show that
both the sequence of primal solutions and the sequence of dual solutions generated
by our algorithm enjoy a linear convergence, which is confirmed empirically in
three representative experiments of PGMs.

Deep learning

In the second part of the thesis, we focus on deep learning. For deep neural
networks, the learning problem is generally a large-scale nonconvex optimization
problem, in which neither the objective value nor the gradient can be computed
efficiently. Recall that a nonconvex optimization problem is considered extremely
difficult since the problem may have many local minima and saddle points. However,
when a neural network is over-parameterized, for example, by increasing the depth
and/or the width of the network, a simple optimization algorithm like stochastic
gradient descent (SGD) (Robbins and Monro 1951) or its variants such as AdaGrad
(Duchi et al. 2011), ADAM (Kingma and Ba 2014) can find global optima in the
case of supervised image classification (Zhang et al. 2016). Moreover, empirical
results by Hinton et al. (2012), He et al. (2016a), Zagoruyko and Komodakis
(2016c) show that over-parameterized networks are less prone to overfitting, and
often achieve a better generalization performance. This phenomenon has been
studied by many theoretical researchers. A few explanations have been published
since then, for example, the flat minima conjecture by Keskar et al. (2016), Wu
et al. (2017), the PAC-Bayes insights by Dziugaite and Roy (2017), Zhou et al.
(2018), Pérez et al. (2018) and the information theory perspective by Tishby and
Zaslavsky (2015), Achille and Soatto (2017).

Although it seems over-parameterized networks work well in practice, there are
two issues brought by the over-parameterization: the memory/energy inefficiency
and the sample inefficiency. The first issue should be attributed to the tremendous
number of parameters. Note that due to the highly parallelizable nature of neural
networks, over-parameterization may not be a problem in terms of speed. However,
the number of parameters to be stored in the memory and the number of operations
to be carried out during the forward and backward passes do cause a serious problem
when applying deep learning to broader domains with resource constraints. The
second issue is more fundamental since neural networks are notoriously known to
be data-hungry. Both theoretical and empirical results (Cybenko 1989b, Raghu
et al. 2017, Zhang et al. 2016) show that neural networks are capable of expressing
a diverse range of functions. According to the classical learning theory (Valiant
1984), this implies that the model complexity can be extremely high, and so does

5

the sample complexity1. In other words, to achieve a small testing error, we will
need a large number of training data. Nevertheless, in many cases, the size of the
training data does not meet this condition due to either the heavy-tailed data
distribution or privacy concerns. These two issues are obviously not isolated. Our
ultimate goal is to have a small network trained on a small dataset which still
yields comparable performance. To this end, multiple ingredients of the deep
learning system should be revised.

The first ingredient we investigate is regularization, which is a process of
reshaping the learning problem in order to prevent overfitting. In deep learning,
traditional regularizers such as weight decay (i.e., the L2 penalty) are less effective
compared to dropout (Srivastava et al. 2014) and batch normalization (Ioffe and
Szegedy 2015a), both of which have a Bayesian interpretation (Kingma et al.
2015, Teye et al. 2018). In fact, many regularization techniques correspond to
imposing prior knowledge from a Bayesian perspective. However, what form of
prior knowledge is suitable for deep learning is not clear. In light of the minimum
description length (MDL) (Rissanen 1978) interpretation of neural networks (Hinton
and Van Camp 1993), which formulates the learning as lossless compression, we
take an alternative path to introduce the prior as a regularization term for the lossy
compression of the data. Specifically, we take the mutual information between
the bootstrap sample and the neural-net weights as the regularization term. The
proposed algorithm resembles the classical Blahut-Arimoto algorithm for lossy
compression (Blahut 1972, Arimoto 1972), in which we compute a local variational
posterior for each bootstrap sample and then use it to update the aggregated
posterior. Unlike MDL methods (Hinton and Van Camp 1993, Graves 2011,
Blundell et al. 2015), we use the aggregated posterior to compute the predictive
distribution rather than taking the variational posterior. Empirically, our method
exhibits some attractive properties over the conventional MDL methods.

The sample efficiency can be achieved in a special multi-task setting where tasks
share some common characteristics. The problem is referred to as meta-learning
and usually solved by learning-to-learn schemes (Vinyals et al. 2016, Ravi and
Larochelle 2016, Finn et al. 2017, Snell et al. 2017, Mishra et al. 2017, Gidaris
and Komodakis 2018). Since each task contains its own datasets, the overall data
provided in meta-learning is a two-level hierarchy of datasets. We thus consider a
hierarchical Bayes formulation consisting of two levels of latent variables, where
the latent variables in the first level are the parameters of each task, and the latent
variable in the second level is the hyperparameter shared across tasks. We opt to
approximate the posterior of the hyperparameter by a point estimate, which leads
to the so-called empirical Bayes. It turns out that the aforementioned mutual
information regularizer appears in the evidence lower bound of the marginal log-
likelihood, but this time we obtain the mutual information between the weights
and the data associated with some task. Note that, in empirical Bayes, we treat

1This argument may be wrong since, as mentioned by Vapnik et al. (1994), the notion of model
complexity should depend on a subset of functions which are reachable from the initialization.

6

individual weights as iid samples of the same random variable. Finally, we derive
an amortized variational inference that couples all local variational posteriors
(one for each sample of the parameter) into a meta-model, which consists of a
synthetic gradient network and an initialization network. Our empirical results
on the mini-ImageNet benchmark for episodic few-shot classification significantly
outperform previous state-of-the-art methods.

A seminal work proposed by Ba and Caruana (2014), Hinton et al. (2015)
has been shown to be useful for improving both energy efficiency and sample
efficiency of deep learning (Yim et al. 2017, Zagoruyko and Komodakis 2016b),
which is achieved by forcing the neural network (i.e., the student) to mimic a
pretrained teacher neural network. This work is important because we can tailor
the student network to be sufficiently small without sacrificing the performance
(Furlanello et al. 2018). Note that, without knowledge transfer, the training of
small networks tends to underfitting and the optimization could be much more
difficult than that of over-parameterized networks. Moreover, provided that the
teacher network is trained on a large-scale source dataset (e.g., ImageNet), the
teacher-student knowledge transfer offers a natural framework for transfer learning.
That being said, existing works require the student network to be sufficiently
similar to the teacher network. Yet no mathematical justification is given to
explain the mechanism behind the knowledge transfer. Inspired by the information
bottleneck interpretation of deep learning (Tishby and Zaslavsky 2015), where the
learning is cast as an optimization that minimizes the mutual information between
the latent representation and the input while maximizing the mutual information
between the latent representation and the label, we propose to maximize the mutual
information between the teacher’s representation and the student’s representation.
To incorporate this negative mutual information term as an additional loss, we
employ a variational lower bound with the Gaussian assumption. We compare our
method with existing knowledge transfer methods on both knowledge distillation
and transfer learning tasks and show that our method consistently outperforms
existing methods. We further demonstrate the strength of our method on knowledge
transfer across heterogeneous network architectures by transferring knowledge
from a convolutional neural network (CNN) to a multi-layer perceptron (MLP) on
CIFAR-10.

The last work of this thesis was due to an empirical finding – deep neural
networks are robust to symmetry constraints imposed on the weights. We propose
several symmetrization techniques and show empirically that these techniques are
very simple and universally applicable to almost any over-parameterized network
without requiring fine-tuning as post-processing, and, depending on network size,
symmetry can have little or no negative effect on network accuracy. For instance,
our symmetrized ResNet-101 has almost 25% fewer parameters than its original
version with only 0.2% accuracy loss on ImageNet. As an application, it can be
used to reduce the memory requirement of neural networks with additionally a
negligible computational cost at training time.

7

Organization of the thesis

As we have mentioned, The thesis will be divided into two parts. The first part
contains the topics in probabilistic graphical models covered by Chapter 2 and
Chapter 3. The second part includes the topics in deep learning covered by Chapter
4, Chapter 5, Chapter 6, Chapter 7 and Chapter 8. The detailed organization of
this thesis is sketched as follows.
Chapter 1 covers the prerequisite mathematics for the presentation of the following
chapters. It includes a basic introduction to information theory and a basic
introduction to the mathematical concepts used by the convergence analysis for
convex optimization.
Chapter 2 gives a general introduction to probabilistic graphical models, includ-
ing common models, variational inference and the formulations for parameter
estimation.
Chapter 3 is based on the following publication:

Shell X. Hu and Guillaume Obozinski. “SDCA-Powered Inexact Dual
Augmented Lagrangian Method for Fast CRF Learning.” International
Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

Chapter 4 gives a general introduction to deep neural networks with an emphasis
on network compression and the over-parameterization phenomenon of neural
networks.
Chapter 5 is based on the following paper:

Shell X. Hu, Pablo G. Moreno, Andreas Damianou, Neil D. Lawrence.
“β-BNN: A Rate-Distortion Perspective on Bayesian Neural Networks.”
NeurIPS Workshop on Bayesian Deep Learning, 2018

Chapter 6 is based on the following paper:

Shell X. Hu, Pablo G. Moreno, Xi Shen, Yang Xiao, Guillaume Obozin-
ski, Neil D. Lawrence, Andreas Damianou. “Empirical Bayes Trans-
ductive Meta-Learning with Synthetic Gradients.” NeurIPS Workshop
on Meta-Learning, 2019. (Long version submitted to ICLR 2020)

Chapter 7 is based on the following publication:

Sungsoo Ahn, Shell X. Hu, Andreas Damianou, Neil D. Lawrence,
Zhenwen Dai. “Variational Information Distillation for Knowledge
Transfer.” IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

Chapter 8 is based on the following publication:

Shell X. Hu, Sergey Zagoruyko, Nikos Komodakis. “Exploring Weight
Symmetry in Deep Neural Networks.” Computer Vision and Image
Understanding (CVIU), 187, p.102786, 2019.

8

9

Chapter

1 Background: Convex Optimization and
Information Theory

Abstract
In this chapter, we cover several basic definitions and theorems in convex opti-
mization and information theory, which will be used in the subsequent chapters. It
is however safe to skip this chapter.

10 Background: Convex Optimization and Information Theory

1.1 Convex Optimization
Definition 1.1.1 (Convexity). A function f(x) is convex if dom(f) is a convex
set and

αf(x) + (1− α)f(y) ≥ f
(
αx+ (1− α)y

)
, ∀x, y ∈ dom(f), α ∈ [0, 1].

If the above inequality holds only for “>”, we say f(x) is strictly convex.

Lemma 1.1.1 (First order condition). A differentiable function f(x) is convex iff

f(y) ≥ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ dom(f).

Proof. By the definition of convexity,

f(y) ≥ f(x) +
f
(
αx+ (1− α)y

)
− f(x)

α
. (1.1)

Let g(α) = f
(
αx+ (1− α)y

)
, then f(x) = g(0) and f(y) = g(1). By taking limits

on both sides, we can rewrite the above inequality as

f(y) ≥ f(x) + lim
α→0

g(α)− g(0)
α

(1.2)

= f(x) +∇g(0) (1.3)
= f(x) + 〈∇f(x), y − x〉. (1.4)

Note that ∇g(α) = 〈∇f(x+ α(y − x)), y − x〉.

Corollary 1.1.1. A differentiable function f(x) is convex iff

〈∇f(x)−∇f(y), x− y〉 ≥ 0, ∀x, y ∈ dom(f).

Proof. By the Lemma 1.1.1,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 (1.5)
f(x) ≥ f(y) + 〈∇f(y), x− y〉. (1.6)

The result follows by combining the above inequalities, which cancels out f(x) and
f(y) on both sides.

Definition 1.1.2 (Lipschitz continuous gradient). A differentiable function is said
to have Lipschitz continuous gradient if there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ dom(f), (1.7)

where L is called the Lipschitz constant of f .

Theorem 1.1.2. The following statements are equivalent:

1. A differentiable convex function f(x) has Lipschitz continuous gradient.

1.1 Convex Optimization 11

2. f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2 ‖x− y‖

2, ∀x, y ∈ dom(f).

3. αf(x) + (1−α)f(y) ≤ f
(
αx+ (1−α)y

)
+ α(1−α)L

2 ‖x− y‖2, ∀x, y ∈ dom(f).

4. L
2 ‖x‖

2 − f(x) is convex.

5. If f is twice differentiable, ∇2f(x) � LI, ∀x ∈ dom(f).

6. 〈∇f(x)−∇f(y), x− y〉 ≥ 1
L
‖∇f(x)−∇f(y)‖2

2, ∀x, y ∈ dom(f).

Proof. We first prove 1⇔ 4. Let g(x) := L
2 ‖x‖

2−f(x), then ∇g(x) = Lx−∇f(x).
Since by Corollary 1.1.1 and Cauchy-Shwartz inequality, we have

〈∇f(x)−∇f(y), x− y〉 ≤ ‖∇f(x)−∇f(y)‖‖x− y‖ (1.8)
≤ L‖x− y‖2, (1.9)

where the last inequality follows from the fact that ∇f(x) is Lipschitz continuous.
By rearranging terms, we obtain

〈(Lx−∇f(x))− (Ly −∇f(y)), x− y〉 ≥ 0. (1.10)

Again, applying Corollary 1.1.1 on g(x), we conclude that g(x) is convex, which
can be used to show the equivalence 1⇔ 3 by expanding

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y). (1.11)

Next, it is straightforward to show the equivalences 4⇔ 2 and 4⇔ 5, since

g(x) is convex⇔ ∇2g(x) = LI −∇2f(x) � 0 if f is twice differentiable (1.12)
⇔ g(y)− g(x) ≥ 〈∇g(x), y − x〉 (1.13)

⇔ f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2 ‖x− y‖
2. (1.14)

To show the equivalence 1⇔ 6, we first introduce

fx(z) = f(z)− 〈∇f(x), z〉 (1.15)
fy(z) = f(z)− 〈∇f(y), z〉. (1.16)

Note that ∇fx(z) = ∇f(z)−∇f(x). Therefore,

‖∇fx(z)−∇fx(z′)‖ = ‖∇f(z)−∇f(z′)‖ (1.17)
≤ L‖z − z′‖, (1.18)

which indicates ∇fx(z) is Lipschitz continuous. Similarly, ∇fy(z) can also be
shown to be Lipschitz. Then, by the statement 2, we have

fx(y) ≤ fx(z) + 〈∇fx(z), y − z〉+ L

2 ‖z − y‖
2. (1.19)

12 Background: Convex Optimization and Information Theory

Minimizing both sides with respect to y yields

min
y
fx(y) ≤ min

y

[
fx(z) + 〈∇fx(z), y − z〉+ L

2 ‖z − y‖
2
]

(1.20)

= fx(z)− 1
2L‖∇fx(z)‖2. (1.21)

Since fx(z) is convex in z, it follows that z∗ = arg minz fx(z) = x⇔ ∇fx(z) = 0.
The above inequality can be rewritten as

1
2L‖∇fx(z)‖2 = 1

2L‖∇f(z)−∇f(x)‖2 ≤ fx(z)− fx(x) (1.22)

= f(z)− f(x) + 〈∇f(x), x− z〉. (1.23)

Let z = y, we have

1
2L‖∇f(y)−∇f(x)‖2 ≤ f(y)− f(x) + 〈∇f(x), x− y〉. (1.24)

Similarly, we obtain a symmetric inequality from fy(z):

1
2L‖∇f(x)−∇f(y)‖2 ≤ f(x)− f(y) + 〈∇f(y), y − x〉. (1.25)

Merging these two inequalities, we show that

1
L
‖∇f(z)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉, (1.26)

which concludes the proof for 1⇔ 6.

In addition to the statements in Theorem 1.1.2, we have also derived two
intermediate results, i.e., eq.(1.9) and eq.(1.24), from the proof, which may also be
of interests.

For many convex optimization problems, the Lipschitz continuity is an essential
assumption in order to prove the convergence of a proposed algorithm. In addition
to that, if we further assume the strong convexity condition holds, there exists
algorithms that guarantee a linear convergence.

Definition 1.1.3 (Strong convexity). A differential function f(x) is strongly
convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2‖x− y‖
2 ∀x, y ∈ dom(f), (1.27)

for some strong-convexity constant µ > 0.

Without loss of generality, we used the differentiability in the definition of
strong convexity. However, this is not required since one could replace the gradients
with sub-gradients.

1.2 Information Theory 13

1.2 Information Theory
We will encounter the Jensen’s inequality many times in this thesis, which forms
the underpinning of variational inference.

Lemma 1.2.1 (Jensen’s inequality). If f is a concave function and X ∈ dom(f)
is a random variable, then

E[f(X)] ≤ f
(
E[X]

)
. (1.28)

Moreover, if f is strictly concave, then

E[f(X)] = f
(
E[X]

)
⇔ X = constant. (1.29)

Proof. Since f is concave, for any x, y ∈ dom(f),

f(x) ≤ f(y) +∇f(y)>(x− y). (1.30)

Choosing y = E[X] and taking expectations over both sides, we have

E[f(X)] ≤ f(y) +∇f(y)>(E[X]− y) (1.31)
= f(E[X]) +∇f(E[X])>(E[X]− E[X]) (1.32)
= f(E[X]). (1.33)

If f is strictly concave and X is a random variable, then eq.(1.30) holds only for
“<”, and E[f(X)] < f(E[X]). Hence, E[f(X)] = f(E[X]) holds only when X is a
constant. In this case, X ≡ E[X].

The mathematical concept of entropy or Shannon entropy was first introduced
by Shannon (1948). Intuitively, if one attempts to encode a random variable X
and assigns a code length to it inversely proportional to p(X), then the code of
X = x will take log2

1
p(x) bits. Thus, the entropy can be interpreted as the average

code length in the binary format. The formal definition reads as follows:

Definition 1.2.1 (Entropy). Let X ∈ X be a discrete random variable with
distribution p(X). The quantity

H(X) = EX∼p(X)

[
log2

1
p(x)

]
=
∑
x∈X

p(x)
[

log2
1

p(x)

]
(1.34)

is called the (Shannon) entropy of X. H(X) is also written as H(p(X)) to
emphasize that it is a functional of the distribution p.

Note that it is valid to use logarithm with respect to other bases, since the
definition of the entropy differs only by a multiplicative constant. The definition
of entropy also holds when X = (X1, . . . , Xn) as a vector of random variables, for
which p(X1, . . . , Xn) is a joint distribution accordingly, and H(X1, . . . , Xn) is called
the joint entropy. When considering interactions between two random variables,
we need an extension of the entropy induced by the conditional distribution.

14 Background: Convex Optimization and Information Theory

Definition 1.2.2 (Conditional entropy). Let X, Y be two discrete random variables
with the joint distribution p(X, Y). The quantity

H(X|Y) = Ey∼p(Y)

[
H
(
p(X|Y = y)

)]
(1.35)

= Ex,y∼p(X,Y)

[1
log p(x|y)

]
(1.36)

is called the conditional entropy.
We have only defined the entropy for discrete random variables. The continuous

counterpart of entropy is called the differential entropy.
Definition 1.2.3 (Differential entropy). Let X be a continuous random variable
with probability density function f(x). The quantity

h(X) =
∫
X
f(x) log 1

f(x)dx (1.37)

is called the differential entropy of X.
It turns out that the definition of entropy for both discrete and continuous

cases can be unified using Lebesgue integral:

h(X) = −
∫
X
f log fdµ, (1.38)

where µ is the Lebesgue measure. In particular, for the discrete case, µ is the
counting measure on X . In both cases, f is the Radon-Nikodym derivative of the
probability measure/distribution P induced by X, namely, f = dP

dµ
, then

h(X) = −
∫
X

dP

dµ
log dP

dµ
dµ = −

∫
X

log dP
dµ

dP. (1.39)

A related quantity is the Kullback-Leibler (KL) divergence, which is also known
as the relative entropy.
Definition 1.2.4 (Kullback-Leibler divergence). Let P , Q be two probability
measures over X . If P is absolutely continuous with respect to Q, that is, Q(X) = 0
implies P (X) = 0, then the Radon-Nikodym derivative dP

dQ
exists and the quantity

DKL(P‖Q) =
∫
X

dP

dQ
log dP

dQ
dQ =

∫
X

log dP
dQ

dP (1.40)

is called the Kullback-Leibler divergence.
Note that the difference between the entropy and the KL divergence is that

the underlying measure µ is replaced by another probability measure Q and the
negative sign is dropped in the definition of KL divergence. For continuous random
variables, the Radon-Nikodym derivative dP

dQ
is computed as the density ratio dP/dµ

dQ/dµ
.

In practice, the entropy and the KL divergence have very distinct usages,
although their definitions are similar. The entropy is usually used as an uncertainty
“measure”, while the KL divergence is considered as a “distance” between two
probability distributions. A highly related quantity to both quantities is the mutual
information.

1.3 Rate-distortion theory 15

Definition 1.2.5 (Mutual information). Let X, Y be two random variables with
joint distribution PXY and marginal distributions PX and PY . The mutual infor-
mation of X and Y is defined by

I(X;Y) = DKL(PXY ‖PXPY). (1.41)

By the definition of mutual information, I(X;Y) ≥ 0 and I(X;Y) = 0 if
and only if X |= Y . It is also symmetric: I(X;Y) = I(Y ;X). Thus, I(X;Y) is
widely used to measure the statistical dependence between X and Y . In other
words, it measures the information about one random variable provided by another
random variable. There are a few other useful properties that connects the mutual
information to the entropy.
Lemma 1.2.2. Let X, Y be two random variables with joint distribution PXY and
marginal distributions PX and PY . The mutual information of X and Y can be
decomposed as

I(X;Y) = h(X) + h(Y)− h(X, Y) (1.42)
= h(X)− h(X|Y) (1.43)
= h(Y)− h(Y |X). (1.44)

There is an analogy between the aforementioned information quantities and
the true measures over sets. Namely, the joint entropy, conditional entropy and
mutual information can be considered as the measure of a set union, set difference
and set intersection respectively.

1.3 Rate-distortion theory
The rate-distortion theory was invoked to define the “goodness” of a representation
of an information source (such as the weights of a neural network). The rate
is referred to the length of the representation and the distortion is introduced
to measure the quality of the representation. In other words, rate-distortion
theory is concerned with the average amount of information about the information
source that must be preserved by any lossy data compression scheme such that
the reproduction can be subsequently generated from the compressed data with
average distortion less than or equal to some specified error.

The readers are invited to follow a detailed description of the rate-distortion
theory at Chapter 10 of Cover and Thomas (2012). This section will only cover
the minimal material.

Let us first introduce some notations. Denote by X ∈ X the input random
variable, enc(X) the code of X produced by an encoder enc(·) and X̂ ∈ X̂ the
estimate of X produced by a decoder dec(·).
Definition 1.3.1. A distortion function is a mapping d : X × X̂ → R+.
Definition 1.3.2. The distortion associated with an encoder enc : X → {1, . . . , K}
and a decoder dec : {1, . . . , K} → X̂ is defined as

D := Ex∼p(x)d(x, dec(enc(x))).

16 Background: Convex Optimization and Information Theory

Definition 1.3.3. The rate associated with an encoder enc : X → {1, . . . , K} is
defined as logK.

Definition 1.3.4. A (R,D) pair is achievable for a distribution p(X) and dis-
tortion function d(·, ·), if there exists an encoder enc : X → {1, . . . , beRc} and
a decoder dec : {1, . . . , beRc} → X̂ such that Ex∼p(x)d(x, dec(enc(x))) ≤ D. The
closure of the set of achievable pairs is called the rate-distortion region.

Definition 1.3.5. The rate-distortion function R(D) is the infimum of rates R
such that (R,D) is achievable.

There is a monotonic trade-off between the rate of the code and the expected
distortion. Essentially, the larger the rate, the smaller is the achievable distortion.
This trade-off is characterized by the celebrated rate-distortion theorem of Shannon
and Kolmogorov.

Theorem 1.3.1 (Rate-distortion theorem, Cover and Thomas (2012) (Theorem
10.2.1)). The rate-distortion function for an iid random variable X with distribution
p(x) and a bounded distortion function d(·, ·) is given by

R(D) = min
p(x̂|x) :

∑
x,x̂

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂) with (1.45)

I(X; X̂) :=
∑
x,x̂

p(x)p(x̂|x) log p(x̂|x)
p(x̂) and p(x̂) =

∑
x

p(x)p(x̂|x). (1.46)

In general, R(D) is difficult to calculate directly since the mutual information
is intractable. However, since the mutual information has a nice variational
characterization, we are able to compute R(D) approximately by an iterative
procedure. We will first introduce the related properties of I(X; X̂) and R(D),
and then derive the variational characterization of R(D).

Lemma 1.3.1. The mutual information I(X; X̂) is functional of p(x) and p(x̂|x),
thus it can be equivalently rewriten as I(X; X̂) = I(p(x), p(x̂|x)). Moreover, the
mutual information is convex in p(x̂|x) and concave in p(x).

Proof. First, we decompose

I(X; X̂) = H(X̂)−H(X̂|X),
= H(p(x̂))−H(p(x̂|x), p(x)).

Given that both H(p(x̂|x), p(x)) and p(x̂) = ∑
x p(x̂|x)p(x) are linear in p(x), and

H(p(x̂)) is a concave function in p(x̂), it immediately follows that I(X; X̂) =
I(p(x), p(x̂|x)) and it is concave in p(x).

To prove the convexity wrt p(x̂|x), we rewrite

I(X; X̂) = Ep(x)DKL(p(x̂|x)‖p(x̂)).

Since the KL divergence is convex in both arguments, fixing p(x), we have I(X; X̂)
is convex in p(x̂|x).

1.3 Rate-distortion theory 17

Proposition 1.3.2. For a rate-distortion function R(D) wrt a distribution p(X),
we have the following properties

1. R(D) is nonincreasing in D for all D ≥ 0.

2. R(D) is convex in D for all D ≥ 0.

3. R(D) is continuous in D for all D ≥ 0.

4. R(D) ≤ H(p), ∀D ≥ 0.
Proof. Having defined R(D) as the solution of a constrained minimization, we
have

1. The constraint set will be enlarged if D increases. Thus, the minimum can
only remain unchanged or smaller, which implies that R(D) is nonincreasing.

2. Consider two rate-distortion pairs (R0, D0) and (R1, D1), which are achieved
at q0(x̂|x) and q1(x̂|x) respectively. Now define qα(x̂|x) = αq0(x̂|x) + (1 −
α)q1(x̂|x). Then, Dα = αD0 + (1− α)D1. By Lemma 1.3.1, we have

R(Dα) ≤ I(p, qα) ≤ αI(p, q0) + (1− α)I(p, q1),
= αR(D0) + (1− α)R(D1),
= αR0 + (1− α)R1,

which implies the convexity.

3. Assume by contradiction that R(D) is discontinous at Dα such that R(Dα) =
limD→D−α R(D) > limD→D+

α
R(D). Then, there exists two end points D0 ∈

(0, Dα) and D1 ∈ (Dα,+∞) such that αR(D0) + (1− α)R(D1) < R(Dα) for
some α ∈ (0, 1), which is a contradiction to the convexity of R(D).

4. This is due to I(X; X̂) = H(X)−H(X|X̂) ≤ H(X). Then,

R(D) ≤ min
p(x̂|x) :

∑
x,x̂

p(x)p(x̂|x)d(x,x̂)≤D
H(X) = H(X),

since H(X) is independent of p(x̂|x).

Since R(D) is convex, for any β ≤ 0, there exists a point on the curve of R(D)
for 0 ≤ D ≤ Dmax, such that the slope of a tangent to the curve of R(D) at that
point is equal to −β. Denote such a point by (Ds, R(Ds)), which is not necessarily
unique. Then the tangent line intersects with the R-axis at (0, R(Ds) − s ·Ds),
where s = −β. See Figure 1.1 for an example.

On the other hand, given an autoencoder induced by p(x̂|x) ∈ Px̂, where
Px̂ := {p(x̂|x) ≥ 0 | ∑x̂ p(x̂|x) = 1}, we rewrite the rate and the distortion
respectively as

I(p(x̂|x)) := I(X; X̂), (1.47)
D(p(x̂|x)) :=

∑
x,x̂

p(x)p(x̂|x)d(x, x̂). (1.48)

18 Background: Convex Optimization and Information Theory

Figure 1.1: The rate-distortion plane.

Note that we leave the dependency on p(x) implicit as p(x) is not tunable by the au-
toencoder. For any p(x̂|x) ∈ Px̂, we obtain an achievable pair (I(p(x̂|x)), D(p(x̂|x)))
by definition. For each achievable pair and a given slope s = −β, it also specifies a
line with R-intercept I(p(x̂|x))− s ·D(p(x̂|x)). Among all the parallel lines defined
by an achievable pair and the slope s, it is clear that R(Ds) − s ·Ds yields the
smallest R-intercept, namely,

R(Ds) + β ·Ds = min
p(x̂|x)∈Px̂

I(p(x̂|x)) + β ·D(p(x̂|x)). (1.49)

Thus, by computing the RHS of (1.49), we can compute the value of the rate-
distortion function R(D) at Ds. This can also be understood as the geometrical
interpretation of the Lagrangian of (1.45)

L(p(x̂|x), β) := I(p(x̂|x)) + β
[
D(p(x̂|x))−Ds

]
. (1.50)

To further simplify the minimization of the RHS of (1.49), we resort to the
following variational characterization of the mutual information.

Lemma 1.3.2 (Cover and Thomas (2012) (Theorem 10.8.1)). The mutual infor-
mation has a variational form:

I(X;Y) = min
m(y)

DKL(p(x, y)‖p(x)m(y)),

where the argmin is attained at m∗(y) = p(y) = ∑
x p(x, y).

By applying Lemma 1.3.2, the optimization in (1.49) becomes

min
p(x̂|x)∈Px̂

min
m(x̂)∈M

I(p(x̂|x),m(x̂)) + β ·D(p(x̂|x)), (1.51)

whereM is the set of valid instances of m(x̂).
For the above characterization, Arimoto (1972), Blahut (1972) provide a

convergent iterative algorithm for computing p∗(x̂|x) and m∗(x̂) given a fixed β.

1.3 Rate-distortion theory 19

Proposition 1.3.3 (Blahut-Arimoto Algorithm). LetM := {m | m(x̂) > 0,∀x̂}.
Provided an initial pt(x̂) at t = 0. At iteration t > 0, the Blahut-Arimoto algorithm
takes the following steps:

pt(x̂|x) = mt(x̂)e−βd(x,x̂)∑
x̂′mt(x̂′)e−βd(x,x̂) , (1.52)

mt+1(x̂) =
∑
x

p(x)pt(x̂|x). (1.53)

Moreover, the algorithm converges to the global minimum.

Proof. The proof can be found in Blahut (1972) or Cover and Thomas (2012).

20 Background: Convex Optimization and Information Theory

21

Chapter

2 Introduction to Probabilistic
Graphical Models

Abstract
There exists many introductory materials for probabilistic graphical models, such
as the textbook by Koller et al. (2009), Murphy (2012) and the monograph by
Wainwright (2008). However, different materials have relatively different emphases.
To give a modern review, it is important to revisit existing materials from an
optimization perspective. Following the classical presentation, I will cover three
main topics: model, inference and learning. I first explain the most fundamental
idea of probabilistic graphical models, that is, the conditional independence and its
graph representation. Next, I introduce the inference problem with an emphasis
on the variational techniques. In particular, for the exponential family, different
variational formulations correspond to different approximations to the log-parition
function. Finally, I present two formulations for the learning problem with a focus
on structured-output support vector machine. For both learning and inference, I
also review the classical algorithms.

22 Introduction to Probabilistic Graphical Models

2.1 Introduction

Most of problems in machine learning amount to learn the mapping between input-
output pairs of the form (x, y) given an iid sample of input-output observations.
In the case when Y is high-dimensional and represents a space of structured
objects, the problem is known as structured prediction. It includes applications
such as semantic image segmentation, where Y = {1, . . . ,m}k for an image with k
pixels (each takes m possible values); human pose estimation, where Y = Rk for k
body joints; dependency parsing, where Y is the set of spanning trees, and so on.
Accordingly, the input space X may also be structured, but the structure among
the input is usually implicitly captured by the feature representation.

Structured prediction is computationally expensive even it has already saved a
large amount of computation compared with its unstructured counterpart. For
example, a discrete output space, e.g, Y = Nk, contains an exponential number
of elements and grows very quickly when k increases. Therefore, the operations
involving the whole output space is generally intractable, e.g., computing the mean
E[Y] is NP-hard. A probabilistic graphical model (PGM) is a special family of
distributions, where conditional independence (CI) assumptions among the domain
are made based on human knowledge. The CI assumptions enable a factorization
in the distribution, which reduces a global computation to local computations
within the factors. Another key idea of PGMs is that the CI assumption can be
linked to separation in a graph by associating each node a random variable. This
is where the name of PGM comes from. Adding conditional independences will
basically reduce the treewidth1 of the graph, and thus make the statistical inference
(approximately) solvable in polynomial time.

Although the CI assumptions yield computational benefits, one would ask
whether these assumptions are realistic? A probabilistic graphical model is some-
times referred to as a knowledge-driven method in constrast with data-driven
methods such as deep learning. It is knowledge-driven since we derive a model from
high-level human knowledge to hypothesize the observed data. Thus, the model
itself is, at least partially, interpretable. For example, a time series is naturally
modeled as a chain graph in the context of PGMs. This amounts to introducing the
first-order Markovian assumption. For real problems, such as weather forecasting,
this assumption leads to a probabilistic model based only on the observation of
yesterday. This is certainly not the best choice, but it is intuitive from a human
perspective. In general, PGM offers a practical framework to embed a wide range
of independence assumptions, which is not easy for data-driven methods.

In the following, I will present the key ingredients of PGMs. For a sake of
clarity the presentation will concentrate on variational inference.

1Informally, a tree decomposition of a graph is a grouping of the nodes in the graph in tree
structure. The width of a tree decomposition is the size of the largest group minus one, and the
treewidth of a graph is the smallest width among all tree decompositions.

2.2 Models 23

2.2 Models
Let X := (X1, . . . , Xn) denote a random vector, where each element Xi is a
random variable taking value in the space Xi. A PGM with respect X includes
a probability distribution p(x) over X and a graph G = (V,E), such that each
node in V is associated with a random variable and the edges in E encode the
relationships/dependencies between Xi’s. Following Wainwright (2008), I treat
p(x) as the Radon-Nikodym derivative of the probability measure with respect to
the base measure (which is counting measure in the discrete case and Lebesgue
measure in the continuous case).

Factorization

Given G, we are able to incorporate the CI assumptions into the definition of
p(x) through the factorization according to G. Specifically, p(x) is expressed as a
product of nonnegative local functions (called potential functions), each of which
literally involves only a small set of variables forming a factor. In the directed
case, a factor denotes the parent-child neighborhood. In the undirected case,
a factor is a clique, which is a fully connected subgraph, such as a node or an
edge. Note that the set of factors is not necessarily the set of maximal cliques,
i.e., the set of cliques that are not properly contained within any other clique.
Therefore, the factorization according to G may not be unique. From a modeling
perspective, a model of p(x) is more powerful by including higher-order cliques,
since it requires fewer CI assumptions, but at the same time the computational
overload is increased.

Denote by A the set of factors. For a ∈ A, we have a potential function
ψa : Xa → R, where Xa :=×i∈aXi. We say that p(x) factorizes according to G if

p(x) = 1
Z

∏
a∈A

ψa(xa), with Z =
∑
x∈X

∏
a∈A

ψa(xa), (2.1)

where Z is called the partition function with respect to ψ, serving as a normalizing
constant. For undirected graphs, the corresponding PGMs are called Markov
random fields (MRFs) and p(x) is called the Gibbs distribution. For DAGs, the
corresponding PGMs are called Bayesian networks (BNs) and p(x) takes a special
form:

p(x) =
∏
i∈V

ψi(xi, pa(xi)), (2.2)

where ψi ≥ 0 and ∀i,∀pa(xi),
∑
xi ψi(xi, pa(xi)) = 1. In this case, we always

have Z = 1, since the potential function ψi(xi, pa(xi)) is exactly the conditional
probability distribution p(xi|pa(xi)).

Note that, without the factorization, the time complexity for computing Z is
O(|X |), where |X | returns the cardinality of the space X . For PGMs, the time
complexity reduces to an exponential function in the treewidth, which is much
smaller than O(|X |).

24 Introduction to Probabilistic Graphical Models

A slightly more general graphical representation is called the factor graph
(Kschischang et al. 2001), which is a bipartite graph G = (V,E,A) including the
set of variable nodes V , the set of factor nodes A, and the set of edges between
a factor and a variable. An example of the factor graph is shown in Figure 2.1.
The factor graph is particularly useful in understanding the belief propagation
algorithms for probabilistic inference (Kschischang et al. 2001).

1 2 3 4

CBA

Figure 2.1: A factor graph example. Circles represent variable nodes. Boxes represent factor
nodes. Note that there are only edges between circles and boxes.

Equivalence between conditional independence and factorization

The key feature of PGMs is the connection between the graph and the factorization
of the probability distribution. The connection is built upon the CI assumptions.
In fact, the graph itself does not specify the conditional independences. The
connectivity is a proxy to reason the dependencies between random variables since
each random variable is associated with a node. In analogy, verifying a conditional
independence, S ⊥⊥ T | E, is equivalent to checking if S is separated from T
by E, where S, T,E are three disjoint sets of nodes. The concept of separation
is not uniquely defined. For a undirected graph, the definition of separation is
straightforward:

S is separated from T given E, if E intersect with every path between S and T .

For a directed acyclic graph (DAG), the d-separation (Koller et al. 2009) is used, for
which I adopt an informal definition from (Murphy 2012): S and T are d-separated
given E, if any undirected path between S and T satisfies one of the following
conditions:

1. The path contains an indirect causal-effect structure, A → M → B or an
indirect evidential-effect structure A←M ← B, where M ∈ E.

2. The path contains a common-causal structure, A←M → B, where M ∈ E.

3. The path contains a V-structure, A → M ← B, where neither M nor its
descendants is in E.

Now, we are ready to define the two types of CI in PGMs induced by the
factorization and the graph respectively:

2.2 Models 25

• Independences in distribution:

I(p) := {(A ⊥⊥ B | E)
∣∣∣ p(A,B|E) = p(A|E)p(B|E)}.

• Independences in graph:

I(G) := {(A ⊥⊥ B | E)
∣∣∣A is separate/d-separated from B given E}.

We say G is an I-Map of p(x) if I(G) ⊆ I(p), which means that G does not
contain any local independence that does not hold in p(x). Conversely, p(x) may
have additional independences that are not reflected in G. As a special case, if G
is fully connected, then it is an I-Map for any distribution since it does not assert
any conditional independence assumption.

There is a fundamental connection between CI assumptions and the factoriza-
tion. Koller et al. (2009, Theorem 3.1, 3.2, 4.1, 4.2) have shown this connection
for the directed case and the undirected case respectively. The results can be
summarized as follows.

1. If p(x) factorizes according to G, then G is an I-Map of p(x).

2. If G is an I-Map of p(x), then p(x) factorizes according to G.

For the second statement, we need an additional assumption for undirected graphs:
p(x) is positive, which is also known as the Hammersley-Clifford theorem (Koller
et al. 2009, Theorem 4.2).

Is I(G) = I(p)?

In addition to the above equivalence, one may be interested in whether the
statement I(G) ⊇ I(p) also holds true given that G is an I-Map of p(x) and p(x)
factorizes over G. If so, the set of conditional independences encoded in G is
equivalent to that encoded in p(x). Unfortunately, this desired property is not
true in general as shown by a counterexample in Koller et al. (2009, Example
3.3), where the CI assertion A ⊥⊥ B is not refected in the graph A→ B, even if
p(A,B) = p(A)p(B|A) does factorize according to the graph.

If p(x) factorizes according to G, p(x) is specified by the set of potential
functions {ψa}a∈A by eq.(2.1). The CI assertions outside I(G) can then be viewed
as the set of constraints on the potential functions, which can be written as
polynomial equalities about the potential functions (Koller et al. 2009, Exercise
3.13). A basic property of polynomial functions is that it is either identically zero
or non-zero almost everywhere. Hence, the set of potential functions that satisfy
the CI outside I(G) has measure zero. Hence, for almost all instances of p(x)
that factorize according to G, we have I(G) = I(p). For a more rigorous analysis,
please refer to Koller et al. (2009, Section 3.3.2). Back to the counterexample
aforementioned, the CI outside I(A → B) is given by p(B|A) = p(B). Then,
the set {p(A,B) | p(B|A) = p(B)} has measure zero. This makes sense since
I(A→ B) = I(p) except for a special case when p(B|A) = p(B).

26 Introduction to Probabilistic Graphical Models

Comparison between BNs and MRFs

To finalize this section, I make a comparison between the Bayesian networks and
the Markov random fields. There is no concise conclusion on which model is
more powerful. In fact, they introduce relatively different CI assumptions. For
example, MRFs cannot precisely represent the CIs induced by the v-structures,
while BNs cannot precisely represent the CIs induced by cyclic structures (Murphy
2012, Section 19.2.3). A special case is the chordal graph, which can be perfectly
modeled by either BNs or MRFs. In addition, we say a marginalization is closed
for p(x) if p(x) factorizes in G implies p(xV \i) factorizes in the induced graph by
removing node i and connecting all neighbors of i. This however only holds for the
leafs in the case of BNs. A comparison between Bayesian networks and Markov
random fields is shown in Table 2.1.

Bayesian networks Markov random fields

Factorization p(x) =
n∏
i=1

p(xi|xpa(i)) p(x) = 1
Z

∏
a∈A

ψa(xa)

Independence d-separation Separation
Marginalization Not closed in general, Closed

only when marginalizing leaf nodes

Table 2.1: Comparison of some properties of Bayesian networks and Markov random fields.

2.3 Inference
Given a probability distribution p(x) defined by a PGM, our focus will be solving
one or more of the following probabilistic query problems, which are generically
referred to as inference problems:

1. Computing the density function p(x) via eq.(2.1): one needs to estimate the
value of the partition function Z.

2. Computing the marginal distribution p(xA) over a particular subset A ⊂ V
of nodes.

3. Computing the conditional distribution p(xA|xB) for two disjoint subsets
A,B.

4. Computing the mode of p(x).

The first three problems are called probabilistic inference or marginal infer-
ence, since they all involve computing summations of the form ∑

xS

∏
a∈A ψa(xa),

specifically, the quantities read as

1. p(x) =
∏
a∈A ψa(xa)∑

x′
∏
a∈A ψa(x′a) , the density function.

2.3 Inference 27

2. p(xA) =
∑

x\xA

∏
a∈A ψa(xa)∑

x′
∏
a∈A ψa(x′a) , the marginal distribution.

3. p(xA|xB) =
∏
a∈A ψa(xa)∑

x′\x′
B

∏
a∈A ψa(x′a) , the conditional marginal distribution.

On the other hand, the problem of computing the mode is relatively easier,
which by definition can be expressed as

arg max
x

p(x) = arg max
x

ψ(x). (2.3)

Computing the mode is sometimes known as decoding or maximum a posteriori
(MAP) inference or most probable explanation (MPE) inference.

Although these inference problems are NP-hard in the worst case, exact infer-
ence is possible for certain special cases, such as when the graph is a tree (i.e., an
undirected graph without cycles or a directed graph in which each node has a single
parent) or when the (loopy) graph whose tree decomposition satisfies the running
intersection property, meaning that any subset of nodes containing a given variable
forms a connected component. For a tree-structured PGM, the sum-product belief
propagation algorithm yields exact marginals for each clique. A variant called
max-product belief propagation can be used for solving the MAP inference problem.
From an algorithmic point of view, sum-product belief propagation is a form of
nonserial dynamic programming (Bertele and Brioschi 1972) while max-product
belief propagation is a standard dynamic programming algorithm with the optimal
substructure induced by the tree-structured graph. These two algorithms have
a computational complexity that scales only linearly in the number of nodes.
The same algorithms can also be extended to the tree decomposition case with
running intersection property, which is known as the junction tree algorithm (see
for example Koller et al. (2009, Chapter 10) or Wainwright (2008, Chapter 2) for
a complete description), and the computational complexity also depends on the
treewidth of the graph.

However, there are many PGMs, e.g., the grid-structured graphs for semantic
image segmentation, for which the treewidth is infeasibly large. Therefore, the
exact inference may not be practical any more. Many smart ideas for approximate
inference have been proposed, including variational methods (Jordan et al. 1999)
and Monte Carlo methods (Robert and Casella 2013). The former casts the
inference as an optimization by minimizing some divergence (e.g., the Kullback-
Leibler divergence) between an approximate distribution and the intractable true
distribution. The approximate distribution is then used as a proxy for computing
the quantities of interest for probabilistic queries (such as the mean and the mode
of the population). The latter is based on a simple idea: generating samples from
a proposal distribution, which are then processed to compute any quantity of
interest. The most popular Monte Carlo method is called Markov chain Monte
Carlo (MCMC), including implementations such as the Gibbs sampling and the
Metropolis–Hastings algorithm (Metropolis et al. 1953), which is guaranteed to
work in high-dimensional spaces. By generating sufficient samples, the approximate
quantities are able to achieve any level of accuracy. That being said, both the

28 Introduction to Probabilistic Graphical Models

bias and the variance of MCMC estimate approaches zero as the Markov chain
runs longer and longer. On the other hand, variational methods are considered
if the error due to the variance is higher than that of the bias within a short
amount of time. This is usually the case for the inference and learning problems
of PGMs. Because of that variational methods are preferred over Monte Carlo
methods. Moreover, comparing to MCMC, variational inference is easier to scale
to large data. I will therefore only cover variational inference in this chapter.

2.3.1 Marginal inference
If exact inference for a PGM is computationally intractable, we can alternatively
search for a tractable PGM that approximates the original PGM as close as possible.
For instance, if we remove all other conditional independences except for those
contained in a spanning tree of the graph, we obtain an approximate PGM with
tractable inference. This strategy is critical since, under a certain time budget,
approximate inference may be the only afordable choice for large-scale machine
learning problems.

The key idea behind the variational view of inference is that we perform
inference on an approximate distribution that remains the closest to the original
PGM in terms of some distance measures, such as KL divergence, Jensen-Shannon
divergence, Wasserstein distance and so on.

Exponential family formulation for inference

Consider a PGM= (p(x), G) with p(x) = 1
Z

∏
a∈A ψa(xa). It turns out that a

special parameterization of ψa(xa) offers a different interpretation of the inference.
Specifically,

ψa(xa; θa) = exp
(
〈θa, φa(xa)〉

)
(2.4)

with both θa and φa(xa) in Rda (da ≥ 1 is a hyperparameter). As an example,
φi(xi) is usually provided as a |Xi|-dimensional one-hot vector, denoted by exi ,
with 1 for the xi-th element and 0 elsewhere; and φa(xa) = ⊗i∈c φi(xi) is the result
of a series of tensor products. Then, we can interpret θa = (logψa(xa))xa∈Xa to be
the vector of log-potentials. In this chapter, we assume φa(xa) is not learnable.
However, this assumption can be relaxed in the case of inference, since we can
always absorb φa into θa and let ψa(xa) = exp(〈θa, exa〉).

With this parameterization of ψ, we obtain an exponential family form for p(x)
as

pθ(x) = exp
(
〈θ, φ(x)〉 − F (θ)

)
= exp

(∑
a∈A
〈θa, φa(xa)〉 − F (θ)

)
, (2.5)

where θ := (θa)a∈A is the natural parameter ; φ(x) := (φa(xa))a∈A is called the
sufficient statistics; and F (θ) = logZ is the log-partition function in which we
explicited the dependency on θ. Note that exponential family is indeed a strict

2.3 Inference 29

subset of the distributions that factorize according to G, among which it achieves
the maximum entropy.

The different interpretation of the inference is that the variational inference
for exponential family with Kullback-Leibler (KL) divergence is equivalent to
approximating the log-partition function. To give a formal justification, we will
first go through some properties of the log-partition function F (θ).

Lemma 2.3.1 (Wainwright 2008, Proposition 3.1). The log-partition function
associated with any regular exponential family satisfies

1. ∂F (θ)
∂θa

= Epθ
[
φa(Xa)

]
for all a ∈ A.

2. F (θ) is convex in θ ∈ Θ and strictly convex if F defines a minimal exponential
family.

Lemma 2.3.2. For θ ∈ Θ◦, the Legendre-Fenchel transformation of F (θ) is the
negative entropy of the form

H(q) =
∫
X
q(x) log q(x)ν(dx). (2.6)

Proof. Recall that the Legendre-Fenchel transformation of F (θ) is

F ∗(q) = sup
θ∈dom(F)

[
∫
X
〈θ, φ(x)〉q(x)ν(dx)− F (θ)]. (2.7)

Taking derive with respect to θ yields the condition

q(x) = exp〈θ, φ(x)〉∫
X exp〈θ, φ(x)〉ν(dx) . (2.8)

Thus,

log q(x) = 〈θ, φ(x)〉 − F (θ). (2.9)

Using the above equality and the fact that
∫
X q(x)ν(dx) = 1, eq.(2.7) can be

rewritten as

F ∗(q) = sup
θ∈dom(F)

[
∫
X
q(x)

(
log q(x) + F (θ)

)
ν(dx)− F (θ)] (2.10)

=
∫
X
q(x) log q(x)ν(dx). (2.11)

It concludes the proof.

Computing F (θ) as a KL minimization

We show in the following theorem that the KL minimization is related to the
Legendre-Fenchel transformation of F (θ).

30 Introduction to Probabilistic Graphical Models

Theorem 2.3.1. For pθ in exponential family defined in eq.(2.5), minimizing
DKL(q‖pθ) over a convex set P is equivalent to finding an optimal solution to the
problem

max
q∈P

[
〈θ,Eq[φ(X)]〉+H(q)

]
. (2.12)

If pθ ∈ P, the above optimal objective is exactly equal to F ∗∗(θ) ≡ F (θ).

Proof. Substituting the definition of pθ(x), we observe that

DKL(q‖pθ) = F (θ)− Eq
[

log
exp

(
〈θ, φ(X)〉

)
q(X)

]
(2.13)

= F (θ)− Eq[〈θ, φ(X)〉]−H(q) ≥ 0. (2.14)

Since F (θ) does not depend on q(x), we have that

max
q∈P

Eq[〈θ, φ(X)〉] +H(q)⇔ min
q∈P

DKL
(
q‖pθ

)
. (2.15)

Since the KL divergence is strictly convex in q for θ fixed, if pθ(x) ∈ P, we have
minq∈P DKL(q‖p) = 0, and the argmin is attained at q∗(x) = pθ(x), yielding

F (θ) = Eq∗ [〈θ, φ(X)〉] +H(q∗). (2.16)

Note that H(q) = −F ∗(q). Since F (θ) is convex in θ by Lemma 2.3.1, we have
F (θ) = F ∗∗(θ).

Theorem 2.3.1 offers a variational formulation for computing F (θ), which
is the key idea that casts the marginal inference as an optimization problem.
More importantly, it derives a dual representation for F (θ) with the dual variable
q ∈ P. Denote by ∆ is the probability simplex. It is easy to see that if P = ∆,
Theorem 2.3.1 holds since pθ ∈ ∆, that is,

F (θ) = max
q∈∆

[
〈θ,Eq[φ(X)]〉+H(q)

]
. (2.17)

Note that q is indeed a functional corresponding to a primal functional θ ≡
logψ, which means that the same result holds even if we did not use the linear
parameterization θ(x) = logψ(x) = 〈θ, φ(x)〉. Since now we specify the primal
variable θ = (θa)a∈A to be a vector with the same dimensionality as that of φ(x),
we expect the dual variable to be a vector as well rather than a functional.

Denote by µ the dual variable, which is also known as the mean parameter of
the exponential family. In fact, the primal and the dual is coupled by the so-called
moment matching condition:

µa = ∂F (θ)
∂θa

= Epθ [φa(Xa)],∀a ∈ A, (2.18)

2.3 Inference 31

which is given by the Fenchel-Young’s inequality when the equality holds. If we
were using functional primal and dual, namely, θ and q respectively, the above
condition became

q(x) = ∂F (θ)
∂θ(x) = pθ(x). (2.19)

Note that, for all θ ∈ Θ := {θ | F (θ) < +∞}, there is an induced dual variable
µ by the moment matching condition. This induces a space of µ, called marginal
polytope, and denoted by

M := {(µa)a∈A | ∃θ ∈ Θ s.t. Epθ [φa(Xa)] = µa,∀a ∈ A}. (2.20)

With the same reasoning, we can define the “functional” version of the marginal
polytope to be

Q := {q ∈ ∆ | ∃θ ∈ Θ s.t. q(x) = pθ(x),∀x ∈ X}. (2.21)

Due to the coupling between the primal and the dual, in eq.(2.17), the space of
q can actually be Q, which is a subset of ∆. Thus, by the definition of Q, we have

F (θ) = max
η∈Θ

[
〈θ,Epη [φ(X)]〉+H(pη)

]
. (2.22)

Similarly, we have, in the next theorem, a dual representation for F (θ) in terms of
the marginal polytope.

Theorem 2.3.2 (Wainwright 2008, Theorem 3.4). For any µ belonging to the
interior ofM (denote byM◦), there exists θ ∈ Θ := {θ | F (θ) < +∞}, such that
the moment matching condition holds, namely,

µa = Epθ [φa(Xa)],∀a ∈ A. (2.23)

For any natural parameter θ ∈ Θ satisfying the above condition, the Fenchel
conjugate of F (θ) is defined by

F ∗(µ) =

−H(pθ) if µ ∈M◦

limν∈M◦→µ F
∗(ν) if µ ∈M \M◦

+∞ o.w.
(2.24)

Hence, the log-partition function F (θ) has a variational representation in terms of
Fenchel duality:

F (θ) = max
µ∈M

[
〈θ, µ〉 − F ∗(µ)

]
. (2.25)

Intuitively, the variational representation of F (θ) in eq.(2.25) is itself a maxi-
mization over the marginal polytope. It in general does not reduce the computa-
tional complexity of the inference problem, since bothM and F ∗(µ) are inherently
intractable. In particular, M has an exponential number of linear constraints;

32 Introduction to Probabilistic Graphical Models

F ∗(µ) depends on the negative entropy of pθ(x), but which in general lacks an
explicit form to compute in terms of µ. Furthermore, since F is not strictly convex,
unless p(x) belongs to a minimal exponential family, meaning that there does not
exist a nonzero θ such that 〈θ, φ(x)〉 = constant for any x, θ(µ) is in general not
uniquely determined. All these entanglements render difficulty to formulate the
Fenchel conjugate of F (θ) explicitly.

There are special cases where the variational representation of F (θ) is amenable,
such as PGMs induced by degenerate graphs (no edges) and tree-structured graphs,
in which cases bothM and F ∗ take special forms. The ideas, such as mean-field
variational inference and Bethe variational inference, rely on extending the special
forms of M and F ∗ to general PGMs, which are categorized as approximate
marginal inference.

Mean-field inference

The idea of mean-field approximation first appeared in statistical field theory
(Parisi 1988). The mean-field variational inference has been sucessfully applied
to Bayesian inference and other probabilistic reasonings (Blei et al. 2017). In the
context of PGMs, the mean-field approximation arises from ignoring certain types
of dependencies between random variables.

Theorem 2.3.3. Consider the following PGM =
(
pθ(x), G = (V,E,A)

)
:

• pθ(x) = exp
(
〈θ, φ(x)〉 − F (θ)

)
belonging to a minimal exponential family,

and θ ∈ Θ := {θ | F (θ) < +∞};

• Suppose that T = (V,ET ,AT) is a subgraph of the original graph G, such
that T is acyclic, in other words, ET ⊂ E,AT = V ∪ ET ⊂ A.

• Denote by ΘT the set of natural parameters induced by T , namely, ΘT =
{θ ∈ Θ | θa = 0 if a 6∈ AT}.

The mean-field variational inference for such a PGM picks an approximate distri-
bution q(x) by solving

min
q∈Qmf

DKL(q‖pθ), (2.26)

where Qmf := {q ∈ ∆ | ∃θ ∈ ΘT s.t. q(x) = pθ(x),∀x ∈ X} and ∆ is the probability
simplex. This is equivalent to approximating F (θ) by

Fmf(θ) := max
µ∈Mmf

[
〈θ, µ〉 − F ∗mf(µ)

]
with (2.27)

Mmf := {(µa)a∈A | ∃θ ∈ ΘT s.t. Epθ [φa(Xa)] = µa,∀a ∈ A}, (2.28)
F ∗mf(µ) := −

∑
ij∈ET

H(qij) +
∑
i∈V

(d(i)− 1)H(qi), (2.29)

where qi, qij satisfies Eqa [φa(Xa)] = µa for all i, ij ∈ AT . Moreover, Fmf(θ) ≤ F (θ).

2.3 Inference 33

Proof. By Theorem 2.3.1, we have

min
q∈Qmf

DKL(q‖pθ)⇔ max
q∈Qmf

[
〈θ,Eq[φ(X)]〉+H(q)

]
. (2.30)

By the definition of Qmf, there must exists a η ∈ ΘT , such that q = pη. Since T
is acyclic, there exists a junction tree representation of pη(x) (Wainwright 2008,
eq.(2.12)):

pη(x) =
∏
ij∈ET qij(xij)∏
i∈V qi(xi)d(i)−1 , (2.31)

where qa(xa) is the marginal distribution of xa, i.e., qa(xa) = pη(xa), for all
i, ij ∈ AT , and d(i) is the number of edges in ET connected to node i. Hence,

H(q) = H(pη) =
∑
ij∈ET

H(qij)−
∑
i∈V

(d(i)− 1)H(qi). (2.32)

By Theorem 2.3.2, since η also belongs to Θ, there exists a µ ∈M◦ such that
Eq[φa(Xa)] = µa,∀a ∈ A. Note that the mapping defined by this equation between
q and µ is one-to-one, since q ≡ pη belongs to a minimal exponential family. This
established a change of variable for the RHS optimization in eq.(2.30):

max
µ,q

[
〈θ, µ〉+H(q)

]
(2.33)

s.t. µ ∈M◦ ∩ {µ | Eq[φ(X)] = µ} and q ∈ Qmf . (2.34)

Since q can be seen as a function of µ, the equivalence follows by absorbing the
above constraints in eq.(2.34) into a single constraint encoded byMmf , leaving a
single variable µ.

The mean-field approximation Fmf(θ) yields a lower bound of the true value of
F (θ) simply becauseMmf is a subset ofM.

Note that the variational problem in eq.(2.27) involves solving equations
Eqa [φa(Xa)] = µa for all a ∈ AT , which is in general nontrivial. For a spe-
cial case where Xa is discrete, A = V ∪E and φa(xa) is an one-hot encoded tensor
such that φi(xi) = exi and φij(xij) = φi(xi)φj(xj)>, we have that

Eqa [φa(Xa)] = µa ⇔ qa = µa.

In this case, the mean parameter µa(xa) is indeed the marginal probability of xa.
If in addition, we choose T = (V,ET = ∅,AT = V), then

F ∗mf(µ) = −
∑
i∈V

H(µi),

and the optimization in eq.(2.27) can be rewritten as

max
µ

[
〈θ, µ〉+

∑
i∈V

H(µi)
]

(2.35)

s.t. ∀a ∈ A : µa ∈ ∆ and ∀ij ∈ E : µij = µiµ
>
j . (2.36)

34 Introduction to Probabilistic Graphical Models

This is a concave optimization over a non-convex set, which is typically optimized
by a coordinate ascent scheme. For the optimization in eq.(2.35), the update rule
is

µi(xi) ∝ exp
(
〈θi, φi(xi)〉

)
exp

(∑
j∈neighbors(i)

〈θij, φi(xi)µ>j 〉
)
. (2.37)

Loopy belief propagation

Although the belief propagation algorithm was originally designed for acyclic graphs,
it was found by Pearl (1988) that the same propagation rules can be extended to gen-
eral graphs with loops, resulting in an iterative algorithm called loopy belief propaga-
tion (LBP). For a discrete PGM with density p(x) = 1

Z

∏
i∈V ψi(xi)

∏
ij∈E ψij(xi, xj),

LBP involves the following updates:

mi→j(xj) =
∑
xi

ψi(xi)ψij(xi, xj)
∏

k∈neighbors(i)\j
mk→i(xi), (2.38)

µ̃i(xi) ∝ ψi(xi)
∏

j∈neighbors(i)
mj→i(xi), (2.39)

where mi→j ∈ R|Xj | is the message sending from node i to node j; and µ̃i is an
estimate of the marginal probability of node i. At each iteration of LBP, each
node will send a message to each of its neighbors. The iterations continue until
(µi)i∈V converges. Note that LBP does not guarantee the convergence of µ̃. Thus,
in practice, a heuristic called damping is used to facilitate the convergence of LBP,
which uses damped messages of the form

m̃i→j(xj)← λmi→j(xj) + (1− λ)m̃i→j(xj) (2.40)

rather than the original messages in the iterations. For a more general PGM with
higher order factors, we usually apply LBP on its factor graph. Please refer to the
monograph by Nowozin et al. (2011, Section 3.2) for a full description.

Yedidia et al. (2003) shows that LBP amounts to solving the fixed-point
equations induced by the KKT conditions of the Bethe approximation of F (θ).
Thus, if LBP converges, it converges to a fixed point of the KKT system.

To formally introduce the Bethe approximation of F (θ), the local consistency
polytope should be introduced first, which is defined by

L := {(τa)a∈A | ∀a ∈ A : τa ∈ ∆,∀i ∈ a, xi ∈ Xi :
∑
xa\xi

τa(xa) = τi(xi)}. (2.41)

Intuitively, in the context of PGMs, the local consistency polytope contains all
pseudo marginals that are locally consistent. They are pseudo simply because the
real marginals not only satisfy these constraints but also many more marginalization
constraints. On the other hand, for an exponential family, the marginal polytope
contains real marginals if φa(xa) = exa ,∀a ∈ A, xa ∈ Xa. The relationship between
these two polytopes is characterized by the following lemma.

2.3 Inference 35

Lemma 2.3.3 (Wainwright 2008, Proposition 4.1). For any PGM =
(
pθ(x), G =

(V,E,A)
)
such that pθ(x) ∝ exp

(∑
a∈A〈θa, exa〉

)
, the marginal polytope is a subset

of the local consistency polytope, that is, M ⊆ L. If, in addition, G is acyclic,
M = L.

The Bethe approximation of F (θ) is based on the observation that L can be
used to approximateM, which is specified as follows.

FBethe(θ) := max
µ∈L

[
〈θ, µ〉 − F ∗Bethe(µ)

]
with (2.42)

F ∗Bethe(µ) := −
∑
a∈A

H(µa) +
∑
i∈V

d(i)H(µi), (2.43)

where d(i) is the number of factor nodes connected to i in the factor graph (note
that V ⊂ A). Comparing to eq.(2.25), it involves two kinds of approximation:

• The marginal polytopeM is replaced by the local consistency polytope L.

• The Fenchel conjugate of F (θ) is approximated by F ∗Bethe(µ) = −H(q), where
q ∈ QBethe :=

{
q | ∃τ ∈ L s.t. q(x) =

∏
a∈A τa(xa)∏
i∈V τi(xi)

d(i) ,∀x ∈ X
}
.

Unlike Fmf(θ) lower bounds F (θ), the Bethe approximation FBethe does not
yield a bound, since L is an outer bound ofM, which only produces a variational
relaxation to the original maximization problem.

The Bethe variational inference has many variants based on different entropy
approximations:

• Based on the insight that the Bethe entropy approximation is induced from
trees, the Kikuchi variational inference proposed by Yedidia et al. (2005) (also
known as the generalized belief propagation) strengthens the approximation
by exploiting the more general junction trees to derive the local consistencies
as well as the entropy approximation.

• The Bethe objective turns out to be non-concave although the local consis-
tency polytope is a convex set. Consequently, the Bethe variational inference
may converge to a local optima depending on the initial conditions. There-
fore, a line of research focused on concave entropy approximation has been
proposed. For example, the tree-reweighted (TRW) entropy approximation
proposed by Wainwright et al. (2005b) replaces the Bethe entropy approxi-
mation by a convex combination of tree based entropies. In general, for an
entropy approximation of the form

H(µ) :=
∑
a∈A

caH(xa), (2.44)

Heskes (2006) shows that H(µ) is concave if (ca)a∈A (also known as counting
numbers) can be reparameterized by (αa ≥ 0)a∈A and (αa,i ≥ 0)a∈A,i∈a such

36 Introduction to Probabilistic Graphical Models

that

∀i ∈ V : ci = αi −
∑
a3i

αa,i, (2.45)

∀a ∈ A : ca = αa +
∑
i∈a

αa,i. (2.46)

London et al. (2015) shows that if in addition αa is strictly positive for
all a belongs to A, H(µ) is strongly concave. However, the Bethe entropy
approximation often outperforms the TRW entropy approximation (Meshi
et al. 2009), which means that convexifying the entropy approximation may
have unexpected negative impacts. One solution proposed by Meshi et al.
(2009) is that the counting numbers should be tuned to be as close as possible
to that of the Bethe counterpart, while they satisfy the sufficient conditions
given by Heskes (2006).

To conclude, the loopy belief propagation is indeed an iterative algorithm
to solve the KKT system of the Bethe approximation of the log-partition func-
tion. It explains why LBP does not always converge in practice even with the
damping trick. Moreover, by viewing it this way, many existing algorithms from
(convex) optimization can be applied here with a global convergence guarantee.
For example, the Frank-Wolfe algorithm has been applied to TRW and other
convexified Bethe formulations (Belanger et al. 2013, Krishnan et al. 2015), where
each subproblem amounts to solving a MAP inference (with an off-the-shelf MAP
solver). Alternatively, one can employ a stochastic subspace descent (Richtárik
and Takáč 2017) with each subspace corresponding to a spanning tree, where each
subproblem amounts to solving a marginal inference for the subspace only (which
can be solved exactly by the sum-product belief propagation for trees). In the
extreme case when the subspace reduces to a single factor, the algorithm is known
as the block-coordinate proximal gradient method (Shalev-Shwartz and Zhang 2016,
Beck and Tetruashvili 2013). Note that, unlike LBP, all these algorithms have
a convergence guarantee to a stationary point. For strongly concave entropy
approximations, these algorithms can even be shown to be linearly convergent 2.

2.3.2 MAP inference
In general, the MAP inference is considered easier than marginal inference, since it
can be seen from eq.(2.3) that the partition function is not involved in the MAP
inference. For a PGM with exponential family density, we will see in the following
theorem that the difference between the MAP inference and the marginal inference
is quite small.

2Since the entropy term does not have a Lipschitz gradient on the boundary of L, the proof of
the linear convergence has to follow the stochastic mirror descent framework (Beck and Teboulle
2003, Bolte et al. 2018, Zhang and He 2018) using properties of Bregman divergence. This is
relatively straightforward, but to the best of my knowledge there is no published work dedicated
to this.

2.3 Inference 37

Theorem 2.3.4 (Wainwright 2008, Theorem 8.1). For any PGM =
(
pθ(x), G =

(V,E,A)
)
such that pθ(x) ∝ exp

(∑
a∈A〈θa, exa〉

)
. The MAP inference has the

following alternative formulations:

max
x∈X

∑
a∈A
〈θa, exa〉 = max

µ∈M
〈θ, µ〉 = lim

β→+∞

F (βθ)
β

(2.47)

The first implication from eq.(2.47) is that the only difference between marginal
inference and MAP inference for exponential family is the entropy term. Then,
it is natural to hypothesize that anything works for marginal inference may also
work for MAP inference. Indeed, many algorithms for MAP inference rely on
bounding the marginal polytope by the local consistency polytope. The resulting
formulation is called linear programming relaxation (LPR):

max
µ∈L

[
〈θ, µ〉 ≡

∑
a∈A
〈θa, µa(xa)〉

]
, (2.48)

which is lower bounded by maxµ∈M〈θ, µ〉. The following proposition describes
what we should expect from LPR.

Proposition 2.3.5 (Wainwright 2008, Proposition 8.3). The extrem points of L
andM are related as follows:

1. All extreme points ofM are of the form (exa)a∈A given that x ∈ X , and each
one is also an extreme point of L.

2. For any graph with cycles, L also includes additional extreme points with
fractional elements that lie strictly outsideM.

If we obtained a fractional solution µ by LPR, an additional rounding scheme
is needed to obtain the MAP solution (e.g., the heuristic suggested by Ravikumar
and Lafferty (2006)).

The LPR for MAP inference can be viewed as a counterpart of the Bethe
approximation of F (θ) for marginal inference. However, the equivalence established
in eq.(2.47) does not hold for the Bethe case. That is,

max
µ∈L
〈θ, µ〉 6= lim

β→+∞

FBethe(βθ)
β

. (2.49)

This is because the exchange of the “limit” and the “max” is possible only if F ∗Bethe
is convex, which is obviously not the case for Bethe approximation. Consequently,
the max-product LBP does not solve the LPR problem unless the graph is tree-
structured (Wainwright 2008, Section 8.4.2). However, the TRW approximation
does not have such a restriction, thus the TRW version of max-product LBP does
find a fixed point of LPR’s KKT system (Wainwright et al. 2005a).

Since LPR is indeed a linear programming over the local consistency poly-
tope, several authors proposed alternative algorithms for either the primal or the
dual problem. Due to the entanglement in L (in particular, the marginalization

38 Introduction to Probabilistic Graphical Models

constraints), only a few works optimize the LPR problem in the primal directly.
Yanover et al. (2006) show that TRW max-product LBP is significantly faster than
general-purpose linear programming solvers. Ravikumar et al. (2010) present a
double-looped proximal point algorithm for LPR, where each inner loop involves a
Bregman projection onto L being equivalent to performing a TRW sum-product
LBP.

On the other hand, the dual of LPR, with the dual variable δ := (δai)a∈A,i∈a,
has a nice decomposition property in the primal variable µ:

min
δ

∑
a∈A

max
xa∈Xa

(
〈θa, exa〉+

∑
b3a
〈δba, exa〉 −

∑
i∈a
〈δai, exi〉

)
. (2.50)

Several authors proposed efficient algorithms for solving the dual problem, which are
identified by the same name called dual decomposition. Specifically, Komodakis et al.
(2007) applied subgradient descent on δ achieving a O(1

ε2
) time complexity to obtain

a ε-accurate solution; Werner (2007), Globerson and Jaakkola (2007a), Sontag
and Jaakkola (2009) applied block-coordinate descent on δ by choosing different
blocks. Please refer to Sontag et al. (2011) for a survey on dual decomposition.
The problem with the block-coordinate scheme is that the objective function of
LPR is non-smooth, which may get stuck at a non-stationary point even when the
objective is convex. To overcome this limitation, Nesterov’s smoothing (Nesterov
2005) has been applied to the dual of LPR (Johnson and Willsky 2008, Hazan and
Shashua 2010, Savchynskyy et al. 2011). Note that this is equivalent to computing
F (βθ)
β

with β > 0. In this case, Meshi et al. (2012) has proved a O(1
βε

) time
complexity for block-coordinate methods. By further tweaking the primal of LPR
to be ρ-strongly concave, Meshi et al. (2015a) has shown that a linear convergence
rate (i.e. a O

(
1
βρ

log 1
ε

)
time complexity) can be achieved.

In addition, for a discrete PGM, the MAP inference can be cast as a combinato-
rial optimization. For example, for a binary MRF with submodular3 potentials, the
MAP inference can be solved exactly by GraphCuts (Boykov et al. 2001). Please
refer to Kappes et al. (2013) for other discrete minimization techniques.

2.4 Learning
A PGM is specified by the pair (p(x), G). The notion of learning in PGM is
usually referred to as learning the parameters of p(x) rather than learning the
conditional independences represented by G. To avoid ambiguity, the former is
called parameter estimation, and the latter is called structure learning. To narrow
down the discussion, in this section, I consider only the frequentist setting of
parameter estimation and assume that the structure is fixed. I will begin with a
special case of parameter estimation for exponential family and then continue on
the more general structured output learning.

3We say that f : 2S → R is submodular if for any A ⊂ B ⊂ S and x ∈ S, we have
f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

2.4 Learning 39

2.4.1 Maximum likelihood estimation of exponential fam-
ily

Recall that a PGM with the exponential family form is naturally parameterized
by its natural parameters. Consider the independent and identically distributed
(iid) setting for parameter estimation, where the dataset D := {xi}ni=1 consists
of iid data points. The maximum likelihood estimation (MLE) is achieved by
maximizing the log-likelihood with respect to the natural parameter, which is an
instance of empirical risk minimization with the objective function

L̂(θ;D) := − 1
n

n∑
i=1

log pθ(xi) (2.51)

= −〈θ, 1
n

n∑
i=1

φ(xi)〉+ F (θ). (2.52)

Denote by µ̂ = 1
n

∑n
i=1 φ(xi) the empirical mean parameter. If µ̂ ∈M◦, there exists

a θµ̂ induced by µ̂ such that

µ̂ = Epθµ̂ [φ(x)] (2.53)

by Lemma 2.3.2. Thus, minimizing L̂(θ;D) amounts to computing the entropy
since

H(pθµ̂) = max
θ∈Θ
〈θ, µ̂〉 − F (θ) (2.54)

= 〈θµ̂, µ̂〉 − F (θµ̂). (2.55)

In practice, we find θµ̂ by gradient descent with the gradient

∇L(θ;D) = −µ̂+ Epθ [φ(x)] = −µ̂+ µ. (2.56)

These highlight the connection between MLE and maximum entropy principle.
The optimality condition of MLE is exactly the moment matching condition.

2.4.2 Structured output learning
As we have mentioned in the beginning of this chapter, the structured prediction is a
general learning problem for estimating the mapping between the high-dimensional
input x ∈ X and output y ∈ Y. In many cases, we are only interested in the
structure (i.e. conditional independences) within the output y rather than the
structure within the input x, since the latter is often hard to understand from a
human perspective. Thus, for structured prediction, we estimate the parameters of
the conditional distribution p(y|x) rather than the joint distribution p(x, y). The
associated PGM is known as conditional random field (CRF) (Lafferty et al. 2001).
It should be noted that CRF is not the only model for structured prediction. Since
our focus is graphical model, we assume the structured output space decomposes
according to the graph given by the CRF, that is, Y := Y1 × · · · × Yn.

40 Introduction to Probabilistic Graphical Models

The potential functions of p(y|x) are usually parameterized as a form of
exp

(
θa(x, ya)

)
, and the density of CRF is given by

pθ(y|x) = 1
Z(x, θ) exp

(∑
a∈A

θa(x, ya)
)
, (2.57)

where Z(x, θ) =
∫
Y exp

(∑
a∈A θa(x, ya)

)
ν(dy). To simplify the notations, I will

denote θ(x, y) := ∑
a∈A θa(x, ya). Note that θa(x, ya) has no restriction in its form

of parameterization. However, most of existing algorithms are designed for the
following linear parameterization:

θa(x, ya) = 〈θa, φa(x, ya)〉 (2.58)

with θa ∈ Rda the actual parameter to be learned for each factor a and φa(x, ya)
the feature representation with respect to the input x and the label ya. I will
stick with this linear parameterization in the following, although this may not be
necessary. To reduce the number of parameters, several papers, e.g., Pletscher
et al. (2009), also considered parameter sharing between factors, which can be
hard coded into the parameterization of θ(x, y).

The relationship between CRF and MRF is sometimes called the discriminative-
generative pair (Ng and Jordan 2002), since one could instead define a MRF with
density p(x, y) using exactly the same set of potentials for p(y|x). One example is
logistic regression v.s naive Bayes. Both are special PGMs with null graph.

To learn a CRF from a dataset D := {(xi, yi)}ni=1, the maximum likelihood
estimation is always a good choice. The objective of MLE reads as

1
n

log pθ(yi|xi) = 1
n

n∑
i=1

[
θ(xi, yi)− log

∑
y∈Y

exp
(
θ(xi, y)

)]
. (2.59)

It is characterized by a difference of two terms, where the second term is exactly
the log-partition function– the main computational difficulty as discussed in the
previous sections.

Alternatively, if we know how to evaluate the prediction ŷ with respect to
the ground truth y, namely, the task-specific loss `(y, ŷ) is provided, then we can
directly minimize the expected task-specific loss empirically:

min 1
n

n∑
i=1

`(yi, ŷi). (2.60)

This formulation implicitly depends the prediction ŷ, which is usually chosen to
be the result of the MAP inference

ŷ = arg max
y∈Y

θ(x, y). (2.61)

Thus, from a computational point of view, the direct loss minimization is more
economical, as the log-partition function is not involved.

2.4 Learning 41

In case ŷ 7→ `(y, ŷ) is non-differentiable and the y 7→ arg maxy∈Y θ(x, y) is
discontinuous, the max-margin Markov network Taskar et al. (2003) can be used
to remove the arg max from the learning objective. The idea was further extended
by Tsochantaridis et al. (2005), Joachims et al. (2009) leading to following two
convex upper bounds for `(y, ŷ):

Margin rescaling : `(y, ŷ) ≤ `(y, ŷ) + θ(x, ŷ)− θ(x, y) (2.62)

≤ max
z

[
`(y, z) + θ(x, z)

]
− θ(x, y) (2.63)

Slack rescaling : `(y, ŷ) ≤ `(y, ŷ) ·
(

1 + θ(x, ŷ)− θ(x, y)
)

(2.64)

≤ max
z

[
`(y, z) ·

(
1 + θ(x, z)− θ(x, y)

)]
(2.65)

The original max-margin training in (Taskar et al. 2003, Tsochantaridis et al.
2005) was in fact motivated differently from the above bounds. The key idea is as
follows. If we can obtain zero prediction error on D, then the following inequalities
hold:

∀i ∈ {1, . . . , n}, y ∈ Y : θ(xi, yi)− θ(xi, y) ≥ γ, (2.66)

where γ := mini
[
θ(xi, yi)−maxy∈Y θ(xi, y)

]
≥ 0 defines the margin. Since both

the direction and the magnitude of θ have an impact on the margin, we thus would
like to fix the norm of θ and maximize the margin γ, which yields the following
optimization problem

max
γ,θ : ‖θ‖2=1

s.t. ∀i ∈ {1, . . . , n}, y ∈ Y : θ(xi, yi)− θ(xi, y) ≥ γ. (2.67)

The above problem can be equivalently expressed as a convex quadratic program-
ming of the form

min
θ

1
2‖θ‖

2
2 s.t. ∀i ∈ {1, . . . , n}, y ∈ Y : θ(xi, yi)− θ(xi, y) ≥ 1. (2.68)

In case the zero prediction error cannot be obtained, a slack variable ξi can be
introduced for each data point:

min
θ,ξ≥0

λ

2‖θ‖
2
2 + 1

n

n∑
i=1

ξi (2.69)

s.t. ∀i ∈ {1, . . . , n}, y ∈ Y : θ(xi, yi)− θ(xi, y) ≥ 1− ξi. (2.70)

The margin rescaling and slack rescaling are then introduced naturally since we
do not want to punish all errors equally. Specifically, the constraints become

Margin rescaling : θ(xi, yi)− θ(xi, y) ≥ `(yi, y)− ξi (2.71)

Slack rescaling : θ(xi, yi)− θ(xi, y) ≥ 1− ξi
`(yi, y) . (2.72)

42 Introduction to Probabilistic Graphical Models

I will only focus on the margin-rescaling bound since it is the most commonly
used bound in the literature. An in-depth discussion on the slack-rescaling bound
can be found in the paper by Choi et al. (2016). Since the RHS of eq.(2.63)
can be interpreted as a natural generalization of the hinge loss in support vector
machine (SVM) (Hazan et al. 2010), the method proposed by Tsochantaridis et al.
(2005) is usually called structured output SVM (SSVM). The objective of the
margin-rescaled SSVM reads as

1
n

n∑
i=1

max
z

[
`(yi, z) + θ(xi, z)

]
− θ(xi, yi) + λ

2‖θ‖
2
2. (2.73)

As a special case when ` ≡ 0, we retrieve the structured perceptron (Collins 2002).
One may notice that, in eq.(2.73), there exists n max operations in the form of

max
z

[
`(yi, z) + θ(xi, z)

]
, (2.74)

which is called loss augmented MAP inference. Ideally, we would like the task-
specific loss to be decomposable according to the factors, then eq.(2.74) reduce
to normal MAP inference, since the task-specific loss can be folded into the
original potentials to form the new potentials. There are a few non-decomposable
exceptions, such as the intersection-over-union (IoU) loss (Blaschko and Lampert
2008, Ranjbar et al. 2013) and the area-under-the-curve (AUC) loss (Rosenfeld
et al. 2014), where efficient subroutines for the loss-augmented inference (Blaschko
and Lampert 2008) or proper surrogates of the loss (Yu and Blaschko 2018) are
available.

In general, the SSVM training is more costly than MLE training. The difference
is that the MLE involves computing the softmax functions (i.e., “log-sum-exp”)
while the SSVM involves only computing the max functions. Recall that this
difference also appears between the MAP inference and the marginal inference.

In the following, I will review several representative algorithms for SSVM,
some of which have been implemented in open-source projects such as SVMStruct
(Joachims et al. 2009) and Shogun Machine Learning Toolbox (Sonnenburg et al.
2017).

Cutting plane algorithm

Joachims et al. (2009) emphasize that eq.(2.69) with margin rescaling can be
viewed as a quadratic programming (QP) with n|Y| constraints. This version
of SSVM is referred to as the n-slack margin-rescaled SSVM. Since |Y| has an
exponential number of elements, it is too cumbersome for standard QP solvers to
handle so many constraints. Akin to support vectors in the plain SVM, we expect
only a small fraction of the constraints to be active.

The cutting plane algorithm proposed by Kelley (1960) is designed exactly for
addressing this case. It maintains a working set Wi for each data point i, which is
initialized as an empty set. For each inner iteration, a constraint is added for each
data point if the corresponding loss-augmented margin exceeds the current slack

2.4 Learning 43

variable by more than ε. Then, in the outer loop, the QP problem is solved with
respect to the current constraints stored in the working set. The cutting plane
algorithm for SSVM is summarized as follows.
1: Initialize a working set Wi for each data point; ξ = 0.
2: for all t = 1, . . . , T do
3: for all i = 1, . . . , n do
4: ŷi = arg maxz

[
`(yi, z) + θ(xi, z)

]
.

5: if `(yi, ŷi) + θ(xi, ŷi)− θ(xi, yi) > ξi + ε then
6: Wi = Wi ∪ {ŷi}.
7: Update θ, ξ by solving (2.69) with constraints only in Wi for all i.
8: end if
9: end for
10: end for

If the loss-augmented MAP inference can be solved efficiently, the outer loop
is guaranteed to converge quickly. The following theorem shows that only a
polynomial number of constraints needed for any desired precision ε.

Theorem 2.4.1 (Tsochantaridis et al. 2005, Theorem 18). Assuming that θ(x, y) =
〈θ, φ(x, y)〉. Let R̄ := maxi maxy∈Y ‖φ(xi, yi)−φ(xi, y)‖, ¯̀ := maxi maxy∈Y `(yi, y),
and for any ε > 0, the cutting plane algorithm for (2.69) terminates after adding
at most

max
{2n¯̀
ε
,
8¯̀R̄2

λε2

}
constraints to the working sets.

A variant called one-slack SSVM is also considered by Joachims et al. (2009),
which involves solving n loss augmented inference per iteration, but in total it
requires fewer iterations.

Stochastic subgradient descent

Note that the cutting plane algorithm still keeps a double-loop structure in the
algorithm. The key computational gain in the cutting plane algorithm is the
working set, which enables each inner loop to operate a subset of data points in
contrast with a standard subgradient descent who needs to accumulate subgradients
from all data points. To go beyond the idea of working set, one can consider
a stochastic subgradient descent (SSD) algorithm. In fact, Shalev-Shwartz et al.
(2011) sucessfully applied SSD to SVM showing a sublinear convergence speed.
SSD has also been applied to SSVM as a baseline in Lacoste-Julien et al. (2013b).

The algorithm is actually much simpler than the cutting plane algorithm. It
also works pretty well in practice. Consider a linear parameterization θ(x, y) =
〈θ, φ(x, y)〉, where θ ∈ Rd. By Danskin’s theorem for minimax problems, the
subgradient of (2.73) is

1
n

n∑
i=1

φ(xi, ŷi)− φ(xi, yi), (2.75)

44 Introduction to Probabilistic Graphical Models

where ŷi is the result of loss augmented inference on data point i. Then, the SSD
for SSVM takes the form of

θ(t+1) = θ(t) − ηt
n

(
φ(xi, ŷi)− φ(xi, yi)

)
(2.76)

with the step size ηt at iteration t satisfying
∞∑
t=1

ηt =∞,
∞∑
t=1

η2
t <∞. (2.77)

This is called Robbins-Monro conditions for convergence guarantee.

Block-coordinate Frank-Wolfe algorithm

It is a common practice in the SVM literature to optimize the dual problem rather
than the primal one, since the dual variable at optimum is much sparser than the
primal variable (thanks to the hinge loss). By using this property, one can make
the classifier much more memory efficient, especially when the number of data
points is significantly less than the number of parameters. In case θ(x, y) is convex
in θ, the primal objective is also convex in θ, then maximizing the dual problem is
equivalent to minimizing the primal problem.

To simplify the discussion, I assume that θ(x, y) = 〈θ, φ(x, y)〉. In other words,
θ(x, y) is linear in θ. With this assumption, the dual problem is derived in the
following proposition.

Proposition 2.4.2. Denote by α ∈ Rn|Y| := (αi(y))i∈[n],y∈Y the vector of dual
variables, the dual problem of (2.73) is given by

max
α : ∀i, αi∈∆

D(α) := −λ2‖Aα‖
2 + 〈b, α〉 (2.78)

where the matrix A ∈ Rd×n|Y| := 1
λn

(
φ(xi, yi) − φ(xi, y)

)
i∈[n],y∈Y

and the vector

b ∈ Rn|Y| := 1
n

(
`(yi, y)

)
i∈[n],y∈Y

.

Proof. The convex optimization of (2.73) can be rewritten as

min
θ

max
(zi)i∈[n]∈Yn

∑
i∈[n]
〈−λA>i θ + bi, ezi〉+ λ

2‖θ‖
2, (2.79)

where (Ai)i∈[n] ≡ A and (bi)i∈[n] ≡ b. Since the strong duality holds, switching the
order of the min and the max yields an equivalent problem. Note that minimizing
over θ is now an unconstrained convex problem, which has a closed form solution:
θ∗(z) = ∑

i∈[n] Aiezi . Substituting this back to the objective yields the dual problem
in eq.(2.78).

The Frank-Wolfe algorithm was originally designed by Frank and Wolfe (1956)
for convex optimization problems of the form minx∈C f(x) over a convex set C,
where the convex function f is assumed to be continuously differentiable. At each

2.4 Learning 45

iteration, let x(k) be the current solution, the Frank-Wolfe algorithm updates along
the descent direction x(k)−s∗, where s∗ is obtained by minimizing the linearization
of f at x(k) over C, namley, s∗ = arg minx∈C〈s,∇f(x(k)〉.

The following proposition shows that the Frank-Wolfe algorithm is a good
choice for solving (2.78).

Proposition 2.4.3. Let s∗ = arg maxs : ∀i, si∈∆〈s,∇D(α)〉. Then, s∗ ≡ (z∗i)i∈[n],
where z∗i = arg maxy∈Y

[
`(yi, y) + 〈Aα, φ(xi, y)〉

]
.

Proof. First, we identify that

arg max
y∈Y

[
`(yi, y) + 〈Aα, φ(xi, y)〉

]
= arg max

y∈Y
〈−λA>i Aα + bi, ey〉 (2.80)

using the notations introduced in Proposition 2.4.2. Note that the gradient
∇D(α) = −λA>Aα + b. Then, by stacking the RHS of the above equation for all
i ∈ [n], we obtain arg maxs : ∀i, si∈∆〈s,∇D(α)〉.

Lacoste-Julien et al. (2013b) apply the block-coordinate Frank-Wolfe (BCFW)
algorithm for solving (2.78), which consists of the following steps:
1: Initialize α(0)

i ∈ ∆ for all i.
2: for all k = 1, . . . , K do
3: Pick i at random in {1, . . . , n}.
4: Let z∗i = arg maxy∈Y

[
`(yi, y) + 〈Aα(k), φ(xi, y)〉

]
.

5: Let γ = 2n
k+2n .

6: Update α(k+1)
i = (1− γ)α(k)

i + γez∗i .
7: end for

The above algorithm can be made more practical in several aspects. By using
the representer theorem, one can compute a candidate value for the primal variable:

θ = Aα =
n∑
i=1

Aiαi = 1
λn

n∑
i=1

∑
y∈Y

αi(y)
(
φ(xi, yi)− φ(xi, y)

)
, (2.81)

which is important since maintaining α may not always be possible even it is a
sparse vector. Instead, we can keep n local copies of θ: wi = Aiαi for all i ∈ [n],
such that w(0)

i = 0 and θ(t) = ∑n
i=1w

(t)
i . line 6 is then equivalent to the primal

update

w
(t+1)
i = (1− γ)w(t)

i + γ

λn

(
φ(xi, yi)− φ(xi, y)

)
. (2.82)

Besides, since D(α) is quadratic, the value of γ can be chosen by line search in
a closed form. See Lacoste-Julien et al. (2013b, Algorithm 4) for the version of
BCFW with line search.

46 Introduction to Probabilistic Graphical Models

Dual decomposition for SSVM

Previous algorithms introduced in this section are designed for general structured
output learning. In the case of PGMs, they did not attempt to leverage the
particular structure encoded in the model. Instead, they have to invoke a subroutine
for lossed augmented MAP inference at each iteration, which has shown to be
NP-hard in Section 2.3. The question of whether approximate inference can be
used during learning has been studied by Kulesza and Pereira (2008), Finley and
Joachims (2008). A counterexample given by Kulesza and Pereira (2008) shows that
not all approximations yield convergent SSVM learning. However, the approximate
inference based on linear programming relaxation (LPR) has empirically and
theoretically demonstrated good performance (Finley and Joachims 2008) as long
as the same inference scheme is used in training and testing. Further theoretical
analysis for LPR based loss augmented inference have been conducted by Kulesza
and Pereira (2008), Meshi et al. (2019). In particular, Kulesza and Pereira (2008)
gave a PAC-Bayes bound and Meshi et al. (2019) provided a theoretical explanation
to the observation that linear programming relaxations are often tight in practice.

Recall that LPR can be efficiently solved by dual decomposition based algorithms
(Komodakis et al. 2007, Werner 2007, Globerson and Jaakkola 2007a, Sontag and
Jaakkola 2009). It turns out that the same technique can be used to blend the
inference and learning in the sense that the inference part and the learning part
are updated in an alternating fashion. This basically summarized the idea behind
the work of Meshi et al. (2010), Hazan and Urtasun (2010), Komodakis (2011b).
Specifically, for the PGM =

(
pθ(y|x), G = (V,E,A)

)
, the SSVM learning objective

in eq.(2.73) is upper bounded by

1
n

n∑
i=1

max
µ∈L

[∑
a∈A
〈−λA>iaθa + bia, µa〉

]
+ λ

2‖θ‖
2
2, (2.83)

where Aia and bia are defined similarly as A and b introduced in Proposition 2.4.2:

Aia ∈ Rda×|Ya| := 1
λn

(
φa(xi, yia)− φa(xi, ya)

)
ya∈Ya

,

bia ∈ R|Ya| := 1
n

(
`a(yia, ya)

)
ya∈Ya

.

It should be noticed that the task-specific loss `(yi, y) is assumed to be decompos-
able according to G. This allow us to take advantage of the underlying structure
of the problem.

To derive the dual problem, I associate each equality constraint in L a La-
grangian multiplier δ(i)

as , and let

δ(i) := (δ(i)
as)a∈A,s∈a, η(i)(θ) := (−λA>iaθa + bia)a∈A.

Note that a superscript is added to distinguish different data points. The dual
objective of (2.83) reads as

1
n

n∑
i=1

min
δ(i)

∑
a∈A

max
ya∈Ya

[
〈η(i)(θ), eya〉+

∑
c3a
〈δca, eya〉 −

∑
s∈a
〈δas, eys〉

]
+ λ

2‖θ‖
2
2, (2.84)

2.5 Conclusion 47

which is naturally an upper bound of (2.83), thus it is also an upper bound of the
original SSVM objective.

The above objective function only involves δ(i) and θ. We can compute an
approximate stochastic gradient with respect to θ by taking a few block-coordinate
descent steps on δ(i). Note that the coordinate descent updates on δ(i) can be
derived in closed form, but the detailed form depends on the block sampling
strategy. A comparison on different strategies can be found in Sontag et al. (2011).

To sum up, the dual decomposition learning algorithm takes the following
steps:
1: Initialize δ = 0, θ = 0.
2: for all t = 1, . . . , T do
3: Pick i at random in {1, . . . , n}.
4: Perform a few (usually ≤ 10) block-coordinate updates on δ(i).
5: Perform a stochastic subgradient descent on θ, where the stochastic gradient

is estimated based on the updated δ(i).
6: end for

A convergence proof for the above algorithm can be found in Meshi et al. (2010).

2.5 Conclusion
In this chapter, I covered the basic ingredients on the recent development of
approximate inference and learning for probabilistic graphical models. The main
difficulty comes from the computation over the exponentially large output space.
In inference and learning, this difficulty is reflected in computing the value or the
gradient of the log-partition function. More efficient algorithms will allow the
current formulations to scale up. Besides, most of existing methods focused on
convex PGMs. There are a few exceptions, such as the structured prediction energy
networks (Belanger and McCallum 2016). It remains an open question whether
the current developed techniques are applicable to non-convex PGMs.

48 Introduction to Probabilistic Graphical Models

49

Chapter

3
SDCA-Powered Inexact Dual

Augmented Lagrangian Method
for Fast CRF Learning

Abstract
We propose an efficient dual augmented Lagrangian formulation to learn conditional
random fields (CRF). Our algorithm, which can be interpreted as an inexact gradient
descent algorithm on the multiplier, does not require to perform global inference
iteratively, and requires only a fixed number of stochastic clique-wise updates at
each epoch to obtain a sufficiently good estimate of the gradient w.r.t. the Lagrange
multipliers. We prove that the proposed algorithm enjoys global linear convergence
for both the primal and the dual objectives. Our experiments show that the proposed
algorithm outperforms state-of-the-art baselines in terms of speed of convergence.

50 Inexact Dual Augmented Lagrangian Method for CRF Learning

3.1 Introduction

Learning in graphical models has historically relied on the computation of the
(sub)gradient of the log-likelihood w.r.t. to the canonical parameters, which requires
to solve a MAP or probabilistic inference problem at each iteration. This approach
is slow given that the inference problem is itself computationally expensive. The
difficulty of inference and learning in graphical models is related to the fact that
the log-partition function is in general intractable.

Recent progress on the optimization problems whose objective is a large finite
sum of convex terms has shown that they could be optimized very efficiently
by stochastic algorithms that sample one term at a time (Roux et al. 2012,
Shalev-Shwartz and Zhang 2016, Defazio et al. 2014b). It turns out that the dual
objective of the maximum likelihood estimation of CRF (a.k.a. the maximum
entropy principle) decomposes additively over all cliques if a decomposable entropy
surrogate is used. Even though this dual formulation has a potential to take
advantage of stochastic algorithms, and can be optimized without resorting to
solve a global inference on the entire graph per iteration, all dual parameters (i.e.
mean parameters) are coupled by the marginal polytope constraints, which are in
general intractable. Even its most commonly used relaxation, namely the local
consistency polytope, is itself in practice difficult to optimize over. Recently, Meshi
et al. (2015ba) proposed to replace the marginalization constraints, which are
part of the local consistency polytope, by quadratic penalty terms. The relaxed
problem has then only separable constraints over the cliques that makes it possible
to use efficient block coordinate optimization schemes.

Following these ideas, we consider a dual formulation for CRF learning in
which the marginalization constraints are replaced by an augmented Lagrangian
term, and the intractable Shannon entropy is replaced by a quadratic surrogate so
that stochastic dual coordinate ascent (SDCA) can be used to optimize over the
mean parameters, with similar guarantees as in Shalev-Shwartz and Zhang (2016).
We finally show that by periodically updating the Lagrangian multipliers as we
are optimizing the relaxed dual, we can gradually enforce the marginalization con-
straints, while retaining global linear convergence. In terms of the primal problem
associated with the Lagrange multipliers, our algorithm is an inexact gradient
descent algorithm using stochastic approximation of the multiplier gradients.

Our paper is organized as follows. We review CRF learning in Section 3.3. A
dual augmented Lagrangian formulation is presented in Section 3.4. The proposed
algorithm is presented in Section 3.5, followed by its convergence analysis in
Section 3.6. Finally, we present experiments on three applications in Section 3.7
(Most notations used in the paper can be found in Appendix 3.F).

3.2 Related Work

Due to the independent interest of inference problem in discrete graphical models,
in particular in computer vision, a significant amount of work has been devoted to

3.3 CRF Learning 51

develop efficient approximate inference algorithms (Komodakis et al. 2007, Sontag
et al. 2008, Savchynskyy et al. 2011, Martins et al. 2015). However, the learning
problem is not necessarily easier (can even fail to converge) with an approximate
inference approach as the subroutine (Kulesza and Pereira 2007).

There is a large body of research on efficient algorithms for structured learning.
For the max-margin formulation, the fastest algorithms to date rely on block
coordinate Frank-Wolfe updates (Lacoste-Julien et al. 2013a, Meshi et al. 2015b,
Tang et al. 2016). Using dual decomposition in the inner inference problem, Meshi
et al. (2010), Hazan and Urtasun (2010), Komodakis (2011a) proposed to solve the
classical saddle-point formulation for structured learning problem with algorithms
that alternate between message passing and model parameter updates. Going
further Meshi et al. (2015b), Yen et al. (2016) work on a purely dual formulation
to enable clique-wise updates. For maximum likelihood learning, exponentiated
gradient and its block variants can be applied (Collins et al. 2008). Other recent
work have relied on incremental algorithms (Schmidt et al. 2015) and the fact
that the Gauss-Southwell rule can be applied efficiently for coordinate descent in
some forms of graphical models (Nutini et al. 2015). Another interesting work by
Le Priol et al. (2018) runs SDCA for CRF learning (but still uses an expensive
marginalization oracle).

The BCMM algorithm of Hong et al. (2014) which uses stochastic block
coordinate updates inside ADMM inspired our approach. But our algorithm
performs multiple passes over all blocks before updating the multiplier; and we
prove stronger convergence rates.

We list related structured learning methods with their main characteristics in
Table 1 in Appendix 3.B.5.

Yen et al. (2016) is the most similar work to ours: the proposed algorithm
constructs greedily an (initially sparse) working set of cliques, which is incremented
at each epoch, while we perform stochastic updates on all cliques and possibly
several passes over the data between each update of all Lagrange multipliers.
Also, our work is leveraging the connection with SDCA, and we prove both linear
convergence in the primal and the dual whereas Yen et al. (2016) prove only linear
convergence in the dual.

It is noteworthy that the work of Gidel et al. (2018), which was published at the
same time as this work at AISTATS 2018, studies a related algorithmic framework
based on the Frank-Wolfe algorithm for the same type of convex optimization
problems. The main difference is that they take Frank-Wolfe updates for the inner
loop with a specific analysis to Frank-Wolfe. Besides, they consider applications
beyond the scope of probabilistic graphical models.

3.3 CRF Learning
A discrete conditional random field (CRF) is a family of conditional distributions
over a vector of discrete random variables Y := (Y1, . . . , Ym) given the observation
X. The form of the CRF is assumed to be a product of local functions (a.k.a.
factors or clique functions) that each depends on only a small number of random

52 Inexact Dual Augmented Lagrangian Method for CRF Learning

variables (i.e. a clique). If there exists multiple cliques that share the same local
function, then we group cliques by clique types. Specifically, let wτ ∈ Rdτ be the
parameter vector associated with the clique type τ ∈ T , where T is the set of
clique types. Let C denote the set of all cliques, and Cτ the set of cliques of type
τ ∈ T . Note that each clique c has a unique clique type, which we denote by τc.
With these notations the density function of the CRF can be written as

p(y|x;w) := 1
Z(x,w)

∏
τ∈T

∏
c∈Cτ

exp
(
〈wτ , φc(x, yc)〉

)
,

where w = (wτ)τ∈T ; we denoted Z(x,w) the partition function and φc(x, yc) ∈ Rdτc

the feature map for clique c. Since all random variables are discrete, we use a
one-hot vector yi ∈ Yi := {u ∈ {0, 1}ki : ‖u‖1 = 1} to represent the value of Ys.
Here ki is the cardinality of Yi. For a clique c, the value for the corresponding
random variables is yc = ⊗i∈c yi ∈ Yc := ⊗

i∈c Yi, where ⊗ (resp. ⊗) denotes
the tensor product of vectors (resp. of spaces). Similarly, y ∈ Y is of the form
y = ⊗i∈V yi. W.l.o.g., we consider in the paper only cliques of size at most 2, that
is C = V ∪E, with V and E respectively the set of nodes and of edges of the graph;
the framework generalizes easily to higher-order cliques. Notations used in the
paper are listed in Appendix 3.F.

3.3.1 CRF as exponential family

Given a sample (x(n), y(n)), for each clique c, let η(n)
c (w) := [〈wτc , φc(x(n), yc)〉 : yc ∈

Yc]; then a natural parameter for the exponential family form of the conditional
distribution p(y | x(n)) is η(n)(w) := [η(n)

c (w) : c ∈ C]. The associated sufficient
statistics is T (y) := [yc : c ∈ C], and 〈η(n)(w), T (y)〉 = ∑

c〈η(n)
c (w), yc〉. With these

notations, p(y | x(n)) has the exponential family form:

p
(
y | η(n)(w)

)
= exp

[
〈η(n)(w), T (y)〉 − F

(
η(n)(w)

)]
,

where F (η) := log∑y exp〈η, T (y)〉 = logZ(x(n), w) is the log-partition function.
Given i.i.d. samples {(x(n), y(n))}1≤n≤N , the maximum likelihood estimator for

w is computed by the maximizing ∑n log p(y(n) | x(n);w). Using the exponential
family representation, we can rewrite this problem in two equivalent forms:

max
w

N∑
n=1

[
〈η(n)(w), T (y(n))〉 − F

(
η(n)(w)

)]
,

and minw
∑N
n=1 F

(
θ(n)(w)

)
with θ(n)(w) another natural parameter obtained via

the affine transformation θ(n)(w) = η(n)(w)− 〈η(n)(w), T (y(n))〉1. Alternatively, by
defining Ψ(n) as a sparse block matrix with |T | × |C| blocks, whose (τc, c)-th block
is the matrix Ψ(n)

c ∈ Rdτc×kc with

Ψ(n)
c = [φc(x(n), yc)− φc(x(n), y(n)

c) : yc ∈ Yc],

3.4 Relaxed Formulations 53

we have θ(n)
c (w) = Ψ(n)

c

ᵀ
wτc and θ(n)(w) = Ψ(n)ᵀw.

W.l.o.g., we assume N = 1 and drop the superscript (n) from now on, since one
may view N graphs as a single large graph with several connected components.

Regularized maximum likelihood estimation with a regularization constant
λ > 0 is thus formulated as

min
w
F
(
θ(w)

)
+ λ

2‖w‖
2
2. (3.1)

In order to extend this formulation to cover as well max-margin learning (i.e.,
structured SVMs), we consider the loss-augmented CRF learning introduced by
Pletscher et al. (2010) and Hazan and Urtasun (2010), which leads to a slightly
generalized formulation:

min
w
γF

(
1
γ
θ`(w)

)
+ λ

2‖w‖
2
2, (3.2)

where θ`(w) := θ(w) + ` is then the natural parameter, with ` =
[
[`c(y?c , yc) : yc ∈

Yc] : c ∈ C
]
the user-defined loss and γ ∈ (0,+∞) the temperature hyperparameter.

For a derivation for the loss-augmented CRF see Appendix 3.A.
It is well known that the cost of gradient descent to optimize either eq.(3.1)

or eq.(3.2) (for γ > 0) is prohibitive since ∇wτF (θ(w)) = ∑
c∈Cτ Ψc Eθ[Yc] involves

an expectation over the exponentially large space Y. To exploit the underlying
structure of the function F it is useful to work on the dual problem. Indeed, since
F is convex, it has a variational representation based on conjugate duality:

F (θ) = max
µ
〈µ, θ〉 − F ∗(µ),

where F ∗ is the Fenchel conjugate of F , and the dual variable µ called the mean
parameter is defined by µ = (µc)c∈C with µc = Eθ[Yc]. The set of valid mean
parameters form the so called marginal polytopeM, which is defined as the convex
hull of {T (y) : y ∈ Y}. Moreover, if let HShannon(µ) denote the Shannon entropy
of a CRF with mean parameter µ, it is a classical result (Wainwright 2008, Thm
3.4) that

F ∗(µ) = −HShannon(µ) + ιM(µ),

where ιM(µ) equal to 0 if µ ∈M and +∞ otherwise.

3.4 Relaxed Formulations
In this section, we derive general relaxed dual, primal and corresponding saddle-
point formulations for the CRF learning problem: first, we use the classical local
polytope relaxation (Sec. 3.4.1). Second, we further relax the marginalization
constraints via an augmented Lagrangian (Sec. 3.4.2). Third, we propose a
surrogate for the entropy, which is decomposable, and retains good properties
even when the aforementioned constraints are relaxed (Sec. 3.4.3). The resulting
formulation is convex and is amenable to fast optimization algorithm that are
presented in Section 3.5.

54 Inexact Dual Augmented Lagrangian Method for CRF Learning

3.4.1 Classical local polytope relaxation
Both M and HShannon(µ) are in general intractable due to the exponentially
large structured-output space Y and they are typically replaced by decomposable
surrogates.

It is common to relaxM to the local consistency polytope (Wainwright 2008)

L :=
{
µ ∈ I :

∑
yj∈Yj

µij(yi, yj) = µi(yi),∀{i, j}∈E,∀yi
}
,

where I denotes the Cartesian product of simplex constraints on each clique.
Note that L ⊇ M, since any set of true marginals must satisfy the simplex
constraints and the marginalization constraints, but not vice versa. Equivalently, if
we define Ai = Iki ⊗ 1ᵀ

ki
, the equality constraints can be written in a matrix form

as µi − Aiµij = 0 for all {i, j} ∈ E. Combining all equations, we have Aµ = 0,
where A is a |E| × |C| block matrix (see Appendix 3.F). So, we have equivalently
L = I ∩ {µ : Aµ = 0}.

Since HShannon is also intractable for graphs with large tree-width, we will
use an approximation HApprox which will be constructed so as to be defined and
concave on the whole set I. We propose several entropy approximations suited to
our needs in Section 3.4.3.

Definition 3.4.1. Let FI and FL be the counterparts of F obtained by relaxing
M to I and L respectively, which, in other words, are the Fenchel conjugates of
F ∗I and F ∗L when these are defined by HApprox:

FI(θ`) := max
µ
〈µ, θ`〉 − F ∗I (µ),

FL(θ`) := max
µ
〈µ, θ`〉 − F ∗L(µ),

where F ∗I (µ) := −HApprox(µ) + ιI(µ) andF ∗L(µ) := F ∗I (µ) + ι{Aµ=0}.

Replacing F with FL in eq.(3.2) yields the relaxed primal

P (w) := γFL
(

1
γ
θ`(w)

)
+ λ

2‖w‖
2
2. (3.3)

The corresponding dual objective function is given by

D(µ) := 〈µ, `〉 − γF ∗L(µ)− 1
2λ‖Ψµ‖

2
2. (3.4)

See Appendix 3.B.1 for a derivation.

3.4.2 A dual augmented Lagrangian
It is difficult to optimize D(µ), since the optimization requires some form of
projection onto L, which can be shown to be equivalent to perform graph-wise
marginal inference (Collins et al. 2008). The difficulty is due to the coupling equality
constraint Aµ = 0. Meshi et al. (2015b) proposed to relax ι{Aµ=0} by a quadratic

3.4 Relaxed Formulations 55

term 1
2ρ‖Aµ‖

2
2, which corresponds to employ the penalty method (Bertsekas 1982).

They argue that it is not crucial to enforce exact Aµ = 0 in learning, since the
relaxed problem works well in practice and enables an efficient optimization with
only clique-wise updates. However, the penalty method is known to have issues
associated with the choice of ρ: unless we use a carefully designed scheduling
to update ρ, for a reasonably small ρ, the algorithm will be slow; on the other
hand, using a large fixed value of ρ degrades the problem to independent logistic
regression problems, and, thereby, leads to suboptimal solutions.

Instead, we propose to solve problem eq.(3.4) as a saddle problem of the form
maxµ minξDρ(µ, ξ) where Dρ is the augmented Lagrangian

Dρ(µ, ξ) :=
[
〈`, µ〉 − γF ∗I (µ) + 〈ξ, Aµ〉

]
−
[1
2ρ‖Aµ‖

2
2 + 1

2λ‖Ψµ‖
2
2

]
, (3.5)

with ξ is the Lagrangian multiplier and ρ > 0.
Using duality again, we can derive an associated relaxed primal objective

P̃ρ(w, δ, ξ) := γFI

(
θ`(w) + Aᵀδ

γ

)
+ λ

2‖w‖
2
2 + ρ

2‖δ − ξ‖
2
2,

so that min(w,δ) P̃ρ(w, δ, ξ) is a primal problem associated with the dual problem
maxµDρ(µ, ξ).

Strong duality between these two problems yields a representer theorem

w? = −1
λ

Ψµ?, δ? = ξ? − 1
ρ
Aµ? (3.6)

which provides a duality gap

gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ)−Dρ(µ, ξ)

for the convergence of the maximization of Dρ(µ, ξ) with respect to µ. Moreover,
it is easy to check that minξ,δ P̃ρ(w, δ, ξ) = P (w) because minδ FI(θ(w) + Aᵀδ) =
FL(θ(w)) for any w (see Appendix 3.B.2). This shows that w? defined in eq.(3.6)
is also an optimum of the original primal problem minw P (w). As a consequence,
if a sequence µt converges to µ? then the corresponding wt = − 1

λ
Ψµt converges to

a solution of eq.(3.2). For more details, see Appendix 3.B.

3.4.3 Gini entropy surrogate
We seek a concave entropy surrogate HApprox that decomposes additively on the
cliques. Since the constraint Aµ = 0 is relaxed, we need a surrogate well defined on
the whole set I. The Bethe entropy (Yedidia et al. 2005) is generally non-concave.
Its concave counterparts, such as the tree-reweighted entropy (Wainwright et al.
2005b) or the region-based entropy (Yedidia et al. 2005, London et al. 2015), are
only concave on the local consistency polytope, but non-concave on I.

56 Inexact Dual Augmented Lagrangian Method for CRF Learning

Moreover, a generic difficulty with these entropies is that they do not have
Lipschitz gradients, which prevents the direct application of proximal methods
with usual quadratic proximity terms. We thus propose a coarse but convenient
entropy surrogate of the form:

HApprox(µ) =
∑
c∈C

hc(µc) with hc(µc) := (1− ‖µc‖2
2).

Another surrogate with the same separable form is the second-order Taylor ex-
pansion of the oriented tree-reweighted entropy (OTRW, Globerson and Jaakkola
2007b) around the uniform distribution. This surrogate is also concave on I
(although not strongly concave) and smooth. Preliminary experiments however
did not show that using this more sophisticated entropy improved the results. See
Appendix 3.C for more details.

3.5 Algorithm
Given the form of the entropy surrogate proposed, Dρ decomposes as a sum of
convex separable terms over the block associated to cliques plus a smooth term:

Dρ(µ, ξ) = −
∑
c∈C

f ∗c (µc)− r(µ) with (3.7)

f ∗c (µc) := −γhc(µc) + ι4c(µc)

r(µ) := −〈Aᵀξ + `, µ〉+ 1
2λ‖Ψµ‖

2 + 1
2ρ‖Aµ‖

2,

where 4c := {µc ∈ Rdc
+ | µᵀ

c1 = 1} is the canonical simplex. It can thus be
maximized efficiently by a block-coordinate proximal scheme, such as the proximal
stochastic dual coordinate descent (SDCA, Shalev-Shwartz and Zhang 2016), which
has linear convergence guarantees both in the primal and the dual.

To solve minξ maxµDρ(µ, ξ) we thus propose an algorithm similar to the block
coordinate method of multipliers (BCMM) of Hong et al. (2014): perform dual
stochastic block coordinate ascent (SDCA) on the variables µc to partially maximize
Dρ(µ, ξ) in µ and regularly take a gradient descent step in ξ. Our algorithm, is
an inexact dual augmented Lagrangian (IDAL) method, in the sense that it is an
inexact gradient descent algorithm on the function ξ 7→ d(ξ) := maxµDρ(µ, ξ). To
be precise, if at epoch t, ξ takes the value ξt and µ̂t−1 is the value of µ from the
previous epoch, Algorithm 2 takes Tin stochastic block-coordinate proximal gradient
steps on µ to obtain µ̂t. Denoting Lc the Lispchitz constant of r w.r.t. µc, µc is then
updated by a partial gradient step, and an application of the proximal operator of
1
Lc
f ∗c . Then, by Danskin’s theorem1, applied to equation eq.(3.5), we have that Aµ̂t

is an approximate gradient of d(ξt), and so, Algorithm 1 updates ξ with ξt+1 =
ξt− 1

Ld
Aµ̂t, where Ld is the Lispchitz constant of d(ξ). As for the stopping criteria,

1Bertsekas (See e.g. 1999, Prop. B.25)

3.6 Convergence Analysis 57

Algorithm 1 IDAL scheme
1: Input: Tin, Tex, ε
2: Initialize: µ̂0

c = 1
kc

1 for all c ∈ C and ξ1 = 0
3: for t = 1, . . . , Tex do
4: µ̂t = A(µ̂t−1, Tin, t)
5: Stop if Gt ≤ ε and ‖Aµ̂t‖2 ≤ ε
6: ξt+1 = ξt − 1

Ld
Aµ̂t

7: end for
8: Output: µ̂Tex , ξTex

Algorithm 2 SDCA version of A(µ, Tin, t)
1: µt,0 = µ
2: for s = 1, . . . , Tin do
3: Draw a clique c uniformly at random
4: µt,sc = Prox 1

Lc
f∗c

(
µt,s−1
c − 1

Lc
∇µcr(µt,s−1)

)
5: µt,s−c = µt,s−1

−c
6: end for
7: Output: µt,Tin

we use Gt := gap(w(µ̂t), δ(µ̂t, ξt), µ̂t, ξt) ≤ ε and ‖Aµ̂t‖2 ≤ ε, where w(µ̂t), δ(µ̂t, ξt)
are defined via the representer theorem eq.(3.6) (see Appendix 3.B.4).

3.6 Convergence Analysis
In this section, we study the convergence rate of our algorithm. First, we show
that if we use an iterative and linearly convergent algorithm A to approximately
solve minµDρ(µ, ξ), and if we use warm starts, that is, following the notations
of the previous section, we use µ̂t−1 as the initial value to solve minµDρ(µ, ξt),
then running A for a fixed number of iterations is sufficient to guarantee global
linear convergence in the primal and in the dual. We show that SDCA or simple
block-coordinate proximal gradient descent are applicable as the algorithm A.

3.6.1 Conditions for global linear convergence
To study the convergence, we consider:

• µ̄t := µ?(ξt) = argmaxµDρ(µ, ξt).

• µt,s, the value of µ after s inner steps at epoch t.

• µ̂t := µt,Tin the value of µ at the end of epoch t.

• Dρ-suboptimality: ∆s
t := Dρ(µ̄t, ξt) −Dρ(µt,s, ξt), with at the end of each

epoch ∆̂t := ∆Tin
t = ∆0

t+1.

58 Inexact Dual Augmented Lagrangian Method for CRF Learning

• d-suboptimality: Γt := d(ξt)− d(ξ?).

Theorem 3.6.1 (Linear convergence of the outer iteration). Let A be an algorithm
that approximately solves maxµDρ(µ, ξt) in the sense that

∃β ∈ (0, 1), E[∆̂t] ≤ β E[∆0
t].

Then, ∃κ ∈ (0, 1) characterizing d(ξ) and C > 0, such that, if λmax(β) is the largest
eigenvalue of the matrix

M(β) =
[
6β 3β
1 1− κ

]
,

then after Tex iterations of Algorithm 1 we have∥∥∥∥∥E[∆̂Tex]
E[ΓTex]

∥∥∥∥∥ ≤ C λmax(β)Tex

∥∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥∥ .
The proof is deferred to Appendix 3.D as well as the proofs of the following

corollaries.
The constant κ in the theorem is of the form κ = τ

Ld
with Ld the Lipschitz

constant of d(ξ) and τ a restricted strong convexity constant for d(ξ) obtained by
Hong and Luo (2017) (see Lemma 3.D.3 in Appendix 3.D.2).

Corollary 3.6.2. If A is a linearly convergent algorithm with rate π and if it runs
for Tin iterations, such that, for some β : λmax(β) < 1, we have (1 − π)Tin ≤ β,
then E[∆̂t] and E[Γt] converge linearly to 0.

Note that linear convergence of the expectations implies that ∆t and Γt converge
linearly to 0 almost surely, as a classical consequence of Markov’s inequality and
the Borel-Cantelli lemma. We will show in the next section that when A is SDCA
it is linearly convergent.

Note that the convergence of the gaps ∆t and Γt imply the linear convergence
for the augmented Lagrangian formulation, in the following sense:

Corollary 3.6.3.Let D∞(µ) :=〈`, µ〉−γF ∗I (µ)− 1
2λ‖Ψµ‖

2
2, so that we have D(µ) =

D∞(µ) − ι{Aµ=0}. If ∆t and Γt converge linearly to 0, then |D∞(µ̂t) − D∞(µ?)|
and ‖Aµ̂t‖2

2 both converge to 0 linearly.

Furthermore, if A is linearly convergent as in Corollary 3.6.2, the algorithm is
linearly convergent in terms of the total number of inner steps (for SDCA this is
the total number of clique updates) performed by algorithms A throughout:

Corollary 3.6.4 (Total number of inner updates). With the notations of the
previous corollary, for any β ∈ (0, 1) such that λmax(β) < 1, it is possible to obtain
E[∆̂t] ≤ ε and E[Γt] ≤ ε with a total number of inner iterations Ttot := TinTex such
that

Ttot ≥
log(β)

log λmax(β) log(1− π) log(ε).

3.6 Convergence Analysis 59

We show in Appendix 3.D.5 that to have λmax(β) < 1 we should have β = ακ
with α < 1

3(1+2κ) .
To reason in terms of rate, if the rate of convergence is r then we should

have Ttot ≥ log(ε)
log(1−r) . So identifying the rate of convergence of the algorithm yields

r = 1−exp
(

log(1−π) log(λmax(β))
log(β)

)
. If α and κ are not too large, we can get a simplified

expression for the rate, characterized as follows.

Corollary 3.6.5 (Convergence rate). If κ < 1
2 and α = 1

12 , if Tin ≥ log(ακ)
log(1−π) , then,

there exist a constant C ′ > 0 such that after a total of t Tin + s inner updates, we
have

E[∆s
t + Γt] ≤ C ′

(
1− κπ

2 log(12/κ)

)t Tin+s
.

3.6.2 Convergence results with SDCA
Given the structure of Dρ, if the functions f ∗c in eq.(6.11) are strongly convex, a
good candidate for A is stochastic dual coordinate ascent (SDCA). Indeed, the
results of Shalev-Shwartz and Zhang (2016) show that

Proposition 3.6.6. If A is SDCA, let |C| be the total number of cliques, σc the
strong convexity constant of f ∗c , and Lc the Lipschitz constant of µc 7→ r(µ), then
A is linearly convergent with rate π = minc∈C σc

|C|(σc+Lc) .

Moreover SDCA allows us to bound the duality gap by the increase of Dρ,
which yields linear convergence in the primal.

Proposition 3.6.7. Let ŵt = w(µ̂t). If A is SDCA, then

E[P (ŵt)− P (w?)] ≤ 1
π
E[∆̂t] + E[Γt].

For the sake of the natural surrogates for the entropy (like the Gini-OTRW
entropy proposed in Appendix 3.C), individual functions f ∗c are not strongly convex,
although −Dρ is strongly convex, because the entropy surrogate is strongly concave
on L and the term ‖Aµ‖2 is strongly convex on Ker(A)⊥. In that case another
decomposition is relevant: if σ is the strong convexity constant of −Dρ, then let
f̃ ∗c (µc) = ι4c(µc) + σ‖µc‖2

2 and r̃(µ) = −HApprox(µ) + r(µ) − σ‖µc‖2
2. We again

have Dρ(µ) = −∑c∈C f̃
∗
c (µc) − r̃(µ), with f̃ ∗c strongly convex and r̃ convex and

smooth. SDCA and its theory are here applicable again and guarantees that
Proposition 3.6.6 and following hold. However, for the convergence in the primal a
slightly different argument is needed.

Proposition 3.6.8 (Linear convergence in the primal). Let wt,s = w(µt,s). If A
is a linearly convergent algorithm and the function µ 7→ −Happrox + 1

2ρ‖Aµ‖
2
2 is

strongly convex, then P (wt,s)− P (w?) converges to 0 linearly.

60 Inexact Dual Augmented Lagrangian Method for CRF Learning

3.6.3 Discussion
Optimization with inexact gradients (Devolder et al. 2014) and inexact proximal
operators (Schmidt et al. 2011) have been shown to yield the same convergence rate
as their exact counterparts, provided that errors decrease at a certain rate. Linear
convergence of an inexact augmented Lagrangian method in which both inner and
outer optimizations use Nesterov’s accelerated gradient descent is shown in Lan
and Monteiro (2016). We use the same ideas, except that we leverage the large
finite sum structure of the dual problem to use randomized algorithms. The use of
warm-start is also similar to its use in the meta-algorithm proposed by Lin et al.
(2017), who use inexact gradient descent on the Moreau-Yosida regularization of a
non-smooth objective. In our context, this approach would actually be applicable
by working on Pρ(w, ξ) instead of working in the dual. An investigation in this
direction is of interest but beyond the scope of this paper.

3.7 Experiments

We evaluate our algorithm IDAL on three different CRF models including 1) a
simulated Gaussian mixture Potts model with grid graph and two clique types
(nodes and edges); 2) a semantic segmentation model with planar graph and
two clique types (nodes and edges); 3) a multi-label classification model with
fully-connected graph and unique clique type for all cliques.

We compare with algorithms using only clique-wise oracles for solving
minξ maxµDρ(µ, ξ), namely, the soft-constrained block-coordinate Frank-Wolfe
algorithm (SoftBCFW) by Meshi et al. (2015b) and the greedy direction method
of multipliers (GDMM) algorithm by Yen et al. (2016). Note that SoftBCFW
in fact solves only the special case maxµDρ(µ, ξ ≡ 0), thus it will converge to a
different point than IDAL. In addition, we include a third baseline for the special
case using SDCA (referred as SoftSDCA). Since SoftBCFW and GDMM have
been shown outperforming other baselines such as Lacoste-Julien et al. (2013a),
Meshi et al. (2010) and Hazan and Urtasun (2010), we will not make an extensive
comparison for all these algorithms.

3.7.1 Setup

Gaussian mixture Potts models

This is an extension of the Potts model given observations, whose conditional
density function is defined via Bayes’ rule p(y|x) ∝ p(x|y)p(y), with p(y) a Potts
distribution associated with a grid graph and parameterized by wbinary ∈ Rk2 ,
and with p(x|y) = ∏

i p(xi|yi) assumed to factorize into independent conditional
Gaussian distributions with canonical parameters wunary ∈ R2k, i.e., p(xi|yi) ∝
exp(〈wunary(yi), [xi, x2

i]〉). We consider a 10× 10 grid graph with node cardinality
k = 5. To generate the data, we first draw the label y from p(y), and then the
observation xi is generated from the conditional Gaussian p(xi|yi) for each node.

3.7 Experiments 61

Gaussian mixture Potts Image segmentation Multi-label classification
U
B

of
∆̂
t
+

Γ t

0 5 10 15 20 25 30 35 40 45 50

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

SoftBCFW

SoftSDCA

GDMM

IDAL

0 50 100 150 200 250 300 350 400 450 500

10
−2

10
0

10
2

10
4

10
6

SoftBCFW

SoftSDCA

GDMM

IDAL

0 100 200 300 400 500 600 700 800 900 1000

10
1

10
2

10
3

10
4

10
5

10
6

10
7

SoftBCFW

SoftSDCA

GDMM

IDAL

‖A
µ̂
t ‖

0 5 10 15 20 25 30 35 40 45 50

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SoftBCFW

SoftSDCA

GDMM

IDAL

0 50 100 150 200 250 300 350 400 450 500

10
−4

10
−2

10
0

10
2

10
4

SoftBCFW

SoftSDCA

GDMM

IDAL

0 100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

SoftBCFW

SoftSDCA

GDMM

IDAL

D
(µ̂
t ,
ξ?

)

10
−1

10
0

10
1

10
2

10
3

10
4

−5000

−4000

−3000

−2000

−1000

0

1000

SoftBCFW

SoftSDCA

GDMM

IDAL

10
−1

10
0

10
1

10
2

10
3

10
4

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

SoftBCFW

SoftSDCA

GDMM

IDAL

10
0

10
2

10
4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

SoftBCFW

SoftSDCA

GDMM

IDAL

Te
st
in
g
ac
cu

ra
cy

10
−1

10
0

10
1

10
2

10
3

10
4

0.4

0.45

0.5

0.55

0.6

0.65

SoftBCFW

SoftSDCA

GDMM

IDAL

10
−1

10
0

10
1

10
2

10
3

10
4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

SoftBCFW

SoftSDCA

GDMM

IDAL

10
0

10
2

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

SoftBCFW

SoftSDCA

GDMM

IDAL

Figure 3.1: The comparison between IDAL and other baselines. For the choices of hyperparam-
eters in terms of accuracy and speed, we set (λ = 10, ρ = 1, γ = 1) for Gaussian mixture Potts,
(λ = 10, ρ = 1, γ = 10) for semantic segmentation and (λ = 1, ρ = 0.1, γ = 1) for multi-label
classification. The x-axis is running time in seconds.

The simulated dataset contains 100 samples and is equally divided for training
and testing.

Semantic image segmentation

We consider a typical CRF model used in computer vision for labeling image pixels
with semantic classes. The graph is built upon clustering pixels into superpixels.
Each superpixel defines a node. Two superpixels with a shared boundary define
an edge. The CRF model takes the form p(y|x) ∝ exp

(∑
iw

ᵀ
unaryψi(x, yi) +∑

i,j w
ᵀ
binaryψij(x, yi, yj)

)
, where ψi(x, yi) measure the intra-cluster compatibility

62 Inexact Dual Augmented Lagrangian Method for CRF Learning

within the superpixel i, and ψij(x, yi, yj) measure the inter-cluster compatibility
between superpixels i and j. We conduct the experiment on the MSRC-21 dataset
introduced by Shotton et al. (2006), which has 21 classes, 335 training images and
256 testing images.

Multi-label classification

The task for this problem is assigning each input vector a set of binary target labels.
It is natural to model the inter-label dependencies by CRFs that treat each label as
a node in a fully connected label graph. Following Finley and Joachims (2008), we
define the CRF density function as p(y|x) ∝ exp(∑iw

ᵀ
i φi(x, yi)+∑i,j w

ᵀ
ijφij(yi, yj)),

where the feature maps are specified as φi(x, yi) = yi ⊗ x for each node and
φij(yi, yj) = yi ⊗ yj for each edge. We conduct the experiments on the Yeast
dataset2, which contains 1500 training samples and 917 testing samples. Each
sample has 14 labels and 103 attributes.

Hyperparameters

In theory, Tin could be very large depending on the choice of α and the condition
number π. We find that in practice only a relatively small Tin is needed. We empir-
ically choose Tin = 1

2 |C|. We set the number of outer iterations Tex = 3000 and the
stopping threshold ε = 10−3. The ranges of λ is pre-defined as {10, 1.0, 0.01, 0.001}
and the range of γ is {100.0, 10.0, 1.0, 0.001}. For each experiment, we choose the
best λ and γ in terms of the validation accuracy and a reasonable running time
(not all experiments finished in 3000 outer iterations). We set ρ = 1.0 or ρ = 0.1
as in Meshi et al. (2015b).

3.7.2 Results

To compare IDAL with GDMM, we use the criterion Pρ(ŵt, δ̂t, ξt)−Dρ(µ̂t, ξt) +
Pρ(ŵt, δ̂t, ξt)−Dρ(µ̄Tex , ξTex), which is an upper bound of the theoretical quantity
∆̂t + Γt that we analyzed. To compare IDAL with SoftBCFW, since ξ = 0 for
SoftBCFW, we use the criterion Dρ(µ̂t, ξ?), in which ξ? is obtained from running
IDAL to convergence. Besides, we also use the criteria ‖Aµ̂t‖2 (it measures the
convergence of d(ξ), since ∇d(ξt) ' Aµ̂t) and the testing accuracy, which are
applicable for all three algorithms. The results are shown in Figure 3.1.

There are several interesting points that we can say based on the results: 1)
by tightening the marginalization constraints Aµ = 0, it does help to gain a
better testing accuracy (e.g., IDAL gains small improvements over SoftBCFW); 2)
based on the curves of Dρ(µ, ξ?), we can see that it is key to approach µ? by first
obtaining ξ?, which again shows the importance of enforcing exactness of the local
consistency polytope; 3) IDAL is shown to be a faster algorithm than GDMM.

2http://sourceforge.net/projects/mulan/files/datasets/yeast.rar

http://sourceforge.net/projects/mulan/files/datasets/yeast.rar

3.8 Conclusion 63

One possible reason is that GDMM is in fact an active-set algorithm, which means
the number of updated cliques at very beginning is insufficient comparing to IDAL.
Based on our analysis, we have shown that the quality of the approximate gradient
Aµ̂t depends on Tin. Therefore, it is very likely that GDMM suffers from a slow
convergence because of the poor gradients.

3.8 Conclusion
We proposed a relaxed dual augmented Lagrangian formulation for CRF learning,
in which, thanks to dual decomposition, SDCA can be used to partially optimize
over mean parameters in order to yield a sufficiently good approximation of the
multiplier gradient. Our theoretical analysis shows that if warm-starts are leveraged
and multiplier gradients are approximated with a linearly convergent algorithm,
global linear convergence can be obtained. If SDCA is used, linear convergence
is obtained both in the primal and for the convergence of the dual Lagrangian
method.

Comparing to other baselines such as GDMM and SoftBCFW, our algorithm is
faster in terms of the distance to the optimal objective function value (i.e. ∆̂t + Γt)
and the feasibility of the constraints ‖Aµ‖2

2.
It would be of interest to investigate the use of the same dual augmented La-

grangian formulation for both inference and learning, since according to Wainwright
(2006), this should improve the performance.

In future work, we intend to investigate applications to other problems in
machine learning, the use of Nesterov acceleration or quasi-Newton methods for
multiplier updates, or the connection to other approaches based on Moreau-Yosida
regularization.

64 Inexact Dual Augmented Lagrangian Method for CRF Learning

3.A Loss-Augmented CRF 65

Appendix

3.A Loss-Augmented CRF
In order to extend our learning formulation so as to encompass as well max-margin
structured learning (i.e., structured SVM) in additional to maximum likelihood
learning, we show in this section that our formulation can be generalized to cover
the loss-augmented CRF learning introduced by Pletscher et al. (2010) and Hazan
and Urtasun (2010).

The loss-augmented CRF pγ(y | y?, x) is an extension of the standard CRF
with additional user-defined loss functions `c(y?c , yc) for all cliques and an extra
temperature hyperparameter γ ∈ (0,+∞). We introduce a modified natural
parameter η`(w) := η(w) + ` (similarly we have θ`) that includes the loss term
` =

[
[`c(y?c , yc) : yc ∈ Yc] : c ∈ C

]
. The density function of the loss-augmented CRF

then takes the form

pγ(y | y?, x;w) = exp
(
〈η`(w)/γ, T (y)〉 − F (η`(w)/γ)

)
. (3.8)

A justification for the form of the loss-augmented CRF is based on a rationale
that distinguishes the label to predict y (which is essentially true unknown label)
from the label provided by the annotation y?. The assumption made is then that,
given yc, the annotation y?c is independent of x and yc′ for c′ 6= c. This entails
that p(y, y?|x) = pγ(y | y?, x) ∝ p(y | y?)pγ(y | x), which yields the above form for
pγ(y | y?, x;w) by Bayes’ rule for p(y | y?) ∝ exp(∑c∈C `c(y?c , yc)).

For learning, we use a rescaled maximum likelihood objective (i.e., multiplied
by γ) of the form

min
w
γF

(
1
γ
θ`(w)

)
+ λ

2‖w‖
2
2, (3.9)

with which we can see γ only affects the entropy term in the variational represen-
tation of F , thus it plays a role to determine the learning regime. When γ → 0,
we retrieve a max-margin formulation for structured output learning, since the
corresponding variational problem based on Fenchel duality is

min
w

max
µ∈M
〈µ, θ`〉+ λ

2‖w‖
2
2. (3.10)

Note that this is identical to the linear programming relaxation of the structured
SVM formulation studied by Meshi et al. (2010).

66 Inexact Dual Augmented Lagrangian Method for CRF Learning

It is also possible to retrieve the maximum likelihood regime by making a
change of variable: w′ = w/γ. Then, eq.(3.9) becomes

min
w′

F
(
θ(w′) + 1

γ
`
)

+ λγ

2 ‖w
′‖2

2. (3.11)

Increasing γ decreases the effect of the loss term and simultaneously increases the
effect of the regularization. The maximum likelihood regime is thus retrieved by
letting γ → +∞ and λ→ 0.

3.B Derivations of dual, and relaxed primal and
dual objectives

In this section, we derive the dual objective D(µ) of P (w). Given the augmented
Lagrangian Dρ(µ, ξ), we first introduce a relaxed primal P̃ρ(w, δ, ξ) involving a new
primal variable δ whose components can be interpreted as messages exchanged
between cliques in the context of marginal inference via message-passing algorithms.
The partial minimization with respect to δ then yields the corresponding primal
of Dρ(µ, ξ) with respect to µ for a fixed ξ: Pρ(w, ξ) := minδ P̃ρ(w, δ, ξ), which can
be interpreted as a Moreau-Yoshida smoothing of the original objective Pρ(w).

3.B.1 Derivation of the dual objective D(µ)
Given that θ`(w) = Ψᵀw+ ` and introducing the Fenchel conjugate of FL, we have

P (w) = γFL

(1
γ
θ`(w)

)
+ λ

2‖w‖
2
2

= max
µ∈L

[
〈Ψᵀw + `, µ〉 − γF ∗L(µ)

]
+ λ

2‖w‖
2
2.

Given that the local polytope constraints are defined by linear inequalities, weak
Slater constraint qualification are satisfied, so that strong duality holds and an
equivalent dual problem in µ is obtained by switching the order of minw and maxµ:

D(µ) = 〈`, µ〉 − γF ∗L(µ) + min
w

[
〈Ψᵀw, µ〉+ λ

2‖w‖
2
2

]
= 〈`, µ〉 − γF ∗L(µ)− λmax

w

[
− 1
λ
〈Ψµ,w〉 − 1

2‖w‖
2
2

]
= 〈`, µ〉 − γF ∗L(µ)− 1

2λ‖Ψµ‖
2
2.

3.B.2 Derivation of an extended primal P̃ρ(w, δ, ξ)
Proposition 3.B.1. For a fixed ξ, the primal objective function of Dρ(µ, ξ) takes
the form

Pρ(w, ξ) := min
δ

[
P̃ρ(w, δ, ξ) := γFI

(
θ(w) + Aᵀδ

γ

)
+ λ

2‖w‖
2
2 + ρ

2‖δ − ξ‖
2
]
.

3.B Derivations of dual, and relaxed primal and dual objectives 67

Proof. Clearly, we have D(µ) = minξDρ(µ, ξ). For a fixed value of ξ, consider the
Lagrangian

Lρ,ξ(µ, ν, ν ′, w, δ) = 〈`, µ〉−γF ∗I (µ)− 1
2λ‖ν‖

2− 1
2ρ‖ν

′‖2+〈ξ, ν ′〉+〈w,Ψµ−ν〉+〈δ, Aµ−ν ′〉;

Then clearly minw,δ Lρ,ξ(µ, ν, ν ′;w, δ) = Dρ(µ, ξ). We compute the associated
primal as

P̃ρ(w, δ, ξ) = max
µ,ν,ν′

Lρ,ξ(µ, ν, ν ′, w, δ)

= max
u

[
〈µ, `+ Ψᵀw + Aᵀδ〉 − γF ∗I (µ)

]
+ max

ν

[
〈ν,−w〉 − 1

2λ‖ν‖
2
]

+ max
ν′

[
〈ν ′, ξ − δ〉 − 1

2ρ‖ν
′‖2
]
,

which yields the desired form of Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ) upon expliciting Fenchel
conjugates.

Proposition 3.B.2. The following equalities hold:

min
δ
FI
(

1
γ
(θ(w) + Aᵀδ)

)
= FL

(
1
γ
θ(w)

)
and min

ξ,δ
P̃ρ(w, δ, ξ) = P (w).

Proof. Notice that

min
δ
FI
(

1
γ
(θ(w) + Aᵀδ)

)
= min

δ
max
µ

(1
γ
〈θ(w) + Aᵀδ, µ〉+HApprox(µ)− ιI(µ)

)
= max

µ

(1
γ
〈θ(w), µ〉+HApprox(µ)− ιI(µ)− ι{Aµ=0}

)
= FL

(
1
γ
θ(w)

)
,

where the second equality follows by exchanging minimization and maximization
(strong duality holds by Slater’s conditions) and minimizing with respect to δ.

To show that minξ,δ P̃ρ(w, δ, ξ) = P (w), it is easy to minimize over ξ first,
which cancels out the term ρ

2‖δ − ξ‖
2 by setting ξ = δ. Then, δ only appears in

FI and the result follows from the first result.

3.B.3 Interpretation as Moreau-Yosida smoothing

To understand the structure of Pρ(w, ξ), we shall look at P̃ρ(w, δ, ξ). One may
be interested in where does δ comes from? In fact, forming the Lagrangian of
minw P (w) with Lagrangian multiplier δ corresponding to the marginalization
constraint Aµ = 0, we see that

L(w, δ, µ) :=〈θ`(w), µ〉 − γF ∗I (µ) + λ

2‖w‖
2
2 + 〈δ, Aµ〉.

Recall that the Moreau-Yosida regularization of a function f is defined as the
infimal convolution

Mρf (x) = min
z

[
f(z) + ρ

2‖z − x‖
2
]
.

68 Inexact Dual Augmented Lagrangian Method for CRF Learning

Both Pρ(w, ξ) and Dρ(µ, ξ) have a nice interpretation in terms of the Lagrangian
L and Moreau-Yosida regularization. Note that the Moreau-Yosida regularization
admits the same optimum as the original function, and that it is smooth even
when the original function is not. It is furthermore γρ

γ+ρ -strongly convex if the
original function is γ-strongly convex.

Proposition 3.B.3. Pρ(w, ξ) and Dρ(µ, ξ) are respectively the Moreau-Yosida
regularizations of Lµ? : w, δ 7→ maxµ L(w, δ, µ) and Lw? : µ, δ 7→ minw L(w, δ, µ)
about δ. that is

Pρ(w, ξ) = MρLµ? (w, ξ) = min
δ

[
max
µ

L(w, δ, µ) + ρ

2‖δ − ξ‖
2
2

]
Dρ(µ, ξ) = MρLw? (µ, ξ) = min

δ

[
min
w
L(w, δ, µ) + ρ

2‖δ − ξ‖
2
2

]
.

Proof. For Pρ(w, ξ), note that maxµ L(w, δ, µ) ≡ γFI

(
θ(w)+Aᵀδ

γ

)
+ λ

2‖w‖
2
2. The

equivalent form is immediately derived from Proposition 3.B.1.
For Dρ(µ, ξ), note that minw L(w, δ, µ) ≡ 〈θ, µ〉− γF ∗I (µ)− 1

2λ‖Ψµ‖
2 + 〈δ, Aµ〉,

and minδ〈δ, Aµ〉+ ρ
2‖δ − ξ‖

2 ≡ 〈ξ, Aµ〉 − 1
2ρ‖Aµ‖

2
2. Thus, the equivalence holds.

Note that the penalty formulation corresponds to a special case of P̃ρ(w, δ, ξ)
and Dρ(µ, ξ) with ξ = 0. It introduces an additional term ρ

2‖δ‖
2, thus making the

primal strongly convex with respect to δ and the dual smoother in µ. This effect is
similar to that of using Moreau-Yosida smoothing. However, the additional term
ρ
2‖δ‖

2 will never vanish, so Aµ = 0 will never be satisfied. The more Aµ = 0 is
violated, the less the structure of CRF will be perserved.

3.B.4 Duality gaps and representer theorem

Besides, if we define gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ) − Dρ(µ, ξ) as an upper-bound
estimate of the duality gap Pρ(w, ξ)−Dρ(µ, ξ), specifically

gap(w, δ, µ, ξ) =
[
γFI

(
1
γ
θ`(w) + Aᵀδ

)
+ γF ∗I (µ)− 〈θ`(w) + Aᵀδ, µ〉

]
+
[
λ

2‖w‖
2 + 1

2λ‖Ψµ‖
2 − 〈−w,Ψµ〉

]
+
[
ρ

2‖ξ − δ‖
2 + 1

2ρ‖Aµ‖
2 − 〈ξ − δ, Aµ〉

]
,

we can see that the recovered w and δ by the optimality condition make the 2nd
and 3rd term of gap(w, δ, µ, ξ) disappear. We will see later this is important in
designing the algorithm to solve maxµDρ(µ, ξ).

Finally, we give a rough picture of all the quantities that we introduced in this
section, which can be easily derived from Proposition 3.B.3.

3.B Derivations of dual, and relaxed primal and dual objectives 69

Corollary 3.B.4. The relations between D, Dρ, P and Pρ could be summarized
as

D(µ) ≤ Dρ(µ, ξ) ≤ Pρ(w, ξ);
Dρ(µ) ≤ P (w) ≤ Pρ(w, ξ) ≤ P̃ρ(w, δ, ξ);
max
µ

min
ξ
Dρ(µ, ξ) ≤ min

w
P (w),

with equalities hold for the saddle point (µ?, w?, ξ?). Moreover, the first-order
optimality conditions are given as

w? = −1
λ

Ψµ?, δ? = ξ? − 1
ρ
Aµ? (3.12)

Proof. By constructions, D(µ) = minξDρ(µ, ξ) ≤ Dρ(µ, ξ) and Pρ(w, ξ) =
minδ P̃ρ(w, δ, ξ) ≤ P̃ρ(w, δ, ξ). Other inequalities are the consequences of Propo-
sition 3.B.3 and the min-max inequality. Since the strong duality holds (Slater
conditions satisfied and the problem is convex), we know that the equalities will
hold at the saddle point.

Given the saddle point (µ?, w?, ξ?), to derive w?, δ? from µ?, we know
that w?, δ? = arg minw,δ P̃ρ(w, δ, ξ?). The result follows after computing
∇wP̃ρ(w, δ, ξ?) = 0 and ∇δP̃ρ(w, δ, ξ?) = 0.

So our strategy for CRF learning is minξ maxµDρ(µ, ξ), since we know that

Dρ(µ?, ξ?) ≡ L(w?, δ?, µ?) ≡ P (w?).

Since we work on the space of µ and ξ, to compute the primal objectives or
the duality gap, we can use the mapping specified by the optimality condition
eq.(3.12). More precisely, we define

w(µt,s) = −1
λ

Ψµt,s, δ(µt,s, ξt) = ξt − 1
ρ
Aµt,s,

which is equivalent to the representer theorem. The above condition is also useful
to recover intermediate wt,s from µt,s, which allows us to test on the validation set
or decide if we should stop the learning earlier.

3.B.5 Comparison with State-of-the-Art Structured
Learning Methods

A number of recent works for CRF learning can be viewed as optimizing formu-
lations which are exactly or fairly close to one of P (w), D(µ), Pρ(w, δ), P̃ρ(w, δ, ξ)
or Dρ(µ, ξ). In the following table, we compare these approaches, in terms of the
optimization formulation, the convergence rate (respectively in the primal or in
the dual), and the inference oracle used for computing the gradients (or blockwise
gradients).

70 Inexact Dual Augmented Lagrangian Method for CRF Learning

Table 3.B.1: The Comparison of Structured Learning Methods

Method Learning Regime Primal/Dual Convergence Inference Oracle
Meshi et al. (2010) SSVM Primal (w, δ) Sublinear graphwise MAP (inexact)
Hazan and Urtasun (2010) LossAugCRF Primal (w, δ) Sublinear graphwise marginal (inexact)
Lacoste-Julien et al. (2013a) SSVM Dual (µ) Sublinear graphwise MAP
Schmidt et al. (2015) CRF Primal (w) Linear graphwise marginal
Le Priol et al. (2018) CRF Dual (µ) Linear graphwise marginal
Tang et al. (2016) CRF Dual (µ) Sublinear graphwise MAP
Meshi et al. (2015b) SSVM (soft) Dual (µ, ξ = 0) Sublinear cliquewise MAP
Yen et al. (2016) SSVM Dual (µ, ξ) Linear cliquewise MAP
IDAL LossAugCRF Dual (µ, ξ) Linear cliquewise marginal

3.C Gini Oriented Tree-Reweighted Entropy
The Bethe entropy (Yedidia et al. 2005) is generally non-concave. Its concave
counterparts, such as the tree-reweighted entropy (Wainwright et al. 2005b) or
the region-based entropy (Yedidia et al. 2005, London et al. 2015), are only
concave on the local consistency polytope, but non-concave on I \ L (i.e., when
Aµ 6= 0). Indeed, the Bethe entropy and its concave variants are of the form
HBethe(µ) = ∑

i∈V ciHi(µi) + ∑
{i,j}∈E cijHij(µij), where ci and cij are counting

numbers. Even when HBethe is concave on L, some of the ci or cij can be negative.
The construction of the oriented tree-reweighted entropy stems from the ex-

pression of the entropy of a directed tree as the sum of of the entropy of the
root and the conditional entropies of the variable at each node given their parent
variable. Precisely, for an oriented tree T with the root i0, the joint entropy can
be computed as

HT (Y) := H(Yi0) +
∑

j→i∈T
H(Yi | Yj). (3.13)

On a general graph, if T is a (directed) spanning tree of the graph, then
HT (Y) := H(Yi0) +

∑
t→i∈T

H(Yi | Yj)

≥ H(Yi0) +
m∑
k=1

H(Yik | Yik−1 , . . . , Yi0) =: HShannon(Y). (3.14)

Thus, for any probability distribution over the set of valid directed spanning trees,
in which tree T has probability ρT , the inequality above entails that HShannon(Y) ≤∑
T ρTHT (Y) =: HOTRW(Y), where ρT ≥ 0 and ∑T ρT = 1.
HT (Y) is concave since it is a sum of concave functions, and so is HOTRW(Y)

(who is a convex combination of HT (Y)). To see that, we need to prove the
following fact.
Remark 3.C.1 (Concavity of the conditional entropy). The conditional entropy
H(Yj | Yi) is in fact a function of µij, namely H(Yj | Yi) = H(µij) − H(Aiµij).
Moreover, H(Yj | Yi) is a concave function of µij.
Proof. By definition,

H(Yj | Yi) =
∑
yj ,yi

µij(yj, yi) log
∑
yj µij(yj, yi)
µij(yj, yi)

= H(µij)−H(Aiµij).

3.C Gini Oriented Tree-Reweighted Entropy 71

To show H(Yj | Yi) is concave, we compute its Hessian:

∂2H(Yj | Yi)
∂µ2

ij

= −diag
(

1� µij
)

+ Aᵀdiag
(

1� Aµ
)
A

= −diag
(

1� µij
)

+ diag
(
{ 1
µ̃i(yi)

11ᵀ}kiyi=1

)

where µ̃i = Aiµij, and � denotes entrywise division. Let’s focus on the i-th block
of the negative Hessian. To show that the i-th block is positive semidefinite, that
is, that

diag
({ 1

µij(yi, yj)

}
1≤yj≤kj

)
− 1
µ̃i(yi)

11ᵀ � 0, (3.15)

we can use the Schur complement condition for positive semidefiniteness. Let
U = µ̃i(yi). Since µ̃i(yi) � 0,

L−BᵀU−1B � 0 iff
[
U B
Bᵀ L

]
=
µ̃i(yi) 1ᵀ

1 diag
(
{ 1
µij(yi,yj)}1≤yj≤kj

) � 0.

We also have L = diag
({

1
µij(yi,yj)

}kj
yj=1

)
� 0, then

[
U B
Bᵀ L

]
� 0 iff U −BL−1Bᵀ = µ̃i(yi)− 1ᵀdiag

(
{µij(yi, yj)}kjyj=1

)
1

= µ̃i(yi)− µ̃i(yi) � 0.

Because the last inequality holds, we know eq.(3.15) must be true, which implies
that the Hessian of H(Yj | Yi) is negative semidefinite, thus H(Yj | Yi) is concave.

Note that HOTRW(µ) is concave on the entire set I, unlike many Bethe entropy
variants who are only concave in the local consistency polytope.

We define −→E the directed edge set by expanding each edge from E with two
directed edges, ρi and ρtij respectively as the probabilities of i (as the root) and
i → t appearing in an oriented spanning tree when the latter is drawn with
probability ρT . Then the oriented tree-reweighted entropy takes the form

HOTRW(µ) :=
∑
{i,j}∈E

ρj|i
[
He(µij)−Hi(Aiµij)

]
+ ρi|j

[
He(µij)−Hj(Ajµij)

]
+
∑
i∈V

ρiHi(µi), (3.16)

where Hi(µi) = −∑yi µi(yi) log µi(yi), He(µij) = −∑yi,yj µi(yi, yj) log µi(yi, yj)
and ρi, ρi|j, ρj|i are node/edge appearance probabilities in [0, 1]. HOTRW is concave,
since Hi is concave and it can be checked that so is µij 7→ He(µij) − Hi(Aiµij)

72 Inexact Dual Augmented Lagrangian Method for CRF Learning

(although not strongly concave). It is easy to precompute the appearance proba-
bilities ρi and ρtij via a variant of the directed matrix-tree theorem. See Koo et al.
(2007) for more details.

A generic difficulty with entropies, is that Hi and He do not have Lipschitz
gradients, which prevents the direct application of proximal methods with usual
quadratic proximity terms. We thus propose to replace Hi and He by their
second-order Taylor approximation around the uniform distribution. This yields a
surrogate of the form

HGTRW(µ) :=
∑
{i,j}∈E

ε
[
kiρj|i‖Aiµij‖2 + kjρi|j‖Ajµij‖2

]
− kikj(ρtij + ρtji)‖µij‖2 +

∑
i∈V

kiρi(1− ‖µi‖2), (3.17)

where ε = 1. Since this function is not strongly convex w.r.t. µij because kjIki −
Aᵀ
iAi has a non-trivial kernel, so we also consider variants with ε < 1 and denote

them HGTRW,ε. We call this approximation the Gini OTRW entropy, since it is
consistent with the definition of Gini conditional entropy of Furuichi (2006).

3.D Proof of Theorem 3.6.1 and associated
Corollaries

To prove Theorem 3.6.1, we first need to show d(ξ) is a smooth function, and then
we build up the associated lemmas which will be used in the proof of Theorem
3.6.1. Finally, in the end of this section, we prove Corollary 3.6.2 and Corollary
3.6.3 as the results to show the linear convergence in the dual and in the primal.

3.D.1 Smoothness of d(ξ)
Lemma 3.D.1. d(ξ) is convex and Ld-smooth, where Ld ≤ ρ.

Proof. By definition we have

Dρ(µ, 0) = −〈µ, `〉+ γF ∗I (µ) + 1
2λ‖Ψµ‖

2 + 1
2ρ‖Aµ‖

2.

We then have d(ξ) = maxµDρ(µ, ξ) = maxµ〈µ,Aᵀξ〉 −Dρ(µ, 0) so that if J(µ) :=
Dρ(µ, 0), then d(ξ) = J∗(Aᵀξ) and d is a convex function by Fenchel conjugacy.

For any ξ1 and ξ2, denote by µ1 and µ2 the minimizers of Dρ(·, ξ1) and Dρ(·, ξ2)
respectively. By convexity of d(ξ) and the definition of subgradient, there exists
s1 ∈ ∂F ∗I (µ1) and s2 ∈ ∂F ∗I (µ2) such that

Aᵀξ1 + `− γs1 −
1
λ

ΨᵀΨµ1 −
1
ρ
AᵀAµ1 = 0

Aᵀξ2 + `− γs2 −
1
λ

ΨᵀΨµ2 −
1
ρ
AᵀAµ2 = 0

3.D Proof of Theorem 3.6.1 and associated Corollaries 73

By convexity of F ∗I (µ), we have

〈s1 − s2, µ1 − µ2〉 ≥ 0,

which together with the equations above yields

〈Aᵀ(ξ1 − ξ2)− 1
λ

ΨᵀΨ(µ1 − µ2)− 1
ρ
AᵀA(µ1 − µ2), µ1 − µ2〉 ≥ 0.

Hence,

〈ξ1 − ξ2, A(µ1 − µ2)〉 ≥ 1
λ
‖Ψ(µ1 − µ2)‖2 + 1

ρ
‖A(µ1 − µ2)‖2 ≥ 1

ρ
‖A(µ1 − µ2)‖2.

Now substituting ∇d(ξ1) − ∇d(ξ2) = A(µ1 − µ2) into the above inequality and
using the Cauchy-Schwarz inequality yields

‖∇d(ξ1)−∇d(ξ2)‖ ≤ ρ‖ξ1 − ξ2‖.

That completes the proof.

3.D.2 Associated lemmas for Theorem 3.6.1
We first quantify in the next two lemmas how much D(µ, ξt) should be minimized
in µ to provide a sufficiently accurate approximate gradient that it guarantees
descent on d.

Lemma 3.D.2 (Error on the gradient). Denote µ̄t := µ?(ξt) = argminµD(µ, ξt);
gt := ∇d(ξt) = Aµ?(ξt) and ĝt := Aµ̂t. Let ∆̂t := Dρ(µ̄t, ξt)−Dρ(µ̂t, ξt). We have

1
2Ld
‖ĝt − gt‖2 ≤ ∆̂t, where Ld is the smoothness constant of d.

Proof. Let d∗(y) = maxξ〈ξ, y〉 − d(ξ). Then, it can easily be checked by using the
definition of d and exchanging the order of maximization and minimization that
d∗(y) = minµDρ(µ, 0) + ι{Aµ=y},

Since d is convex, we have d(ξ) = maxy〈ξ, y〉 − d∗(y), so that if y?(ξ) is a
maximizer for fixed ξ we have

0 ∈ ξ − ∂d∗(y?(ξ))⇒ ξ ∈ ∂d∗(y?(ξ)).

The strong convexity of d∗(y) implies that, for all y,

d∗(y)− d∗(y?(ξ))− 〈ξ, y − y?(ξ)〉 ≥ 1
2Ld
‖y − y?(ξ)‖2.

But for any µ, we have Dρ(µ, ξ) = 〈Aµ, ξ〉 − Dρ(µ, 0) ≤ 〈Aµ, ξ〉 − d∗(Aµ), and,
for µ?(ξ), this inequality is an equality, since we have Dρ(µ?(ξ), ξ) = 〈y?(ξ), ξ〉 −
d∗(y?(ξ)) and y?(ξ) = Aµ?(ξ). As a consequence, setting y = Aµ, we have

Dρ(µ?(ξ), ξ)−Dρ(µ, ξ) ≥
1

2Ld
‖Aµ− Aµ?(ξ)‖2

by definition of Dρ(µ, ξ). We conclude the proof by substituting µ with µ̂t and ξ
with ξt.

74 Inexact Dual Augmented Lagrangian Method for CRF Learning

Lemma 3.D.3 (Guaranteed decrease on d). If we take inexact gradient on ξ with
a fixed step size 1

Ld
, namely ξt+1 = ξt − 1

Ld
ĝt, then

d(ξt)− d(ξt+1) ≥ τ

Ld
Γt − ∆̂t, (3.18)

where τ ∈ (0, Ld) satisfying 1
2τ ‖gt‖

2 ≥ Γt.

Proof. Since d(ξ) is Ld-smooth, we have

d(ξt+1)− d(ξt) ≤ 〈∇d(ξt), ξt+1 − ξt〉+ Ld
2 ‖ξ

t+1 − ξt‖2

Using the gradient step and ∇d(ξt) = gt, the above inequality can be simplified as

d(ξt+1)− d(ξt) ≤ 〈gt,−1/Ldĝt〉+ Ld
2 ‖1/Ldĝt‖

2

= 1
2Ld

(
‖ĝt − gt‖2 − ‖gt‖2

)
. (3.19)

We notice that the error bound given by the Lemma 2.3 of Hong and Luo (2017)
holds for d(ξ). Specifically,

∃τ ′ > 0, such that ‖∇d(ξ)‖ ≥ τ ′‖ξ − ξ?‖.

Since d(ξ) is Ld-smooth and ∇d(ξ?) = 0, we have

d(ξ)− d(ξ?) ≤ Ld
2 ‖ξ − ξ

?‖2 ≤ Ld
2τ ′‖∇d(ξ)‖2,

which implies
1
2τ ‖gt‖

2 ≥ Γt,

where τ = τ ′

Ld
. By using eq.(3.19) and the above inequality on ‖gt‖2, we obtain

d(ξt)− d(ξt+1) ≥ 1
2Ld

(
‖gt‖2 − ‖ĝt − gt‖2

)
≥ τ

Ld
Γt − ∆̂t.

Since for each value of ξt the value and gradient of d(ξt) need to be
computed approximately by minimizing the augmented Lagrangian Dρ(·, ξt),
and since the difference between two consecutive strongly convex objectives is
Dρ(µ, ξt) − Dρ(µ, ξt−1) = 〈ξt−1 − ξt, Aµ〉, which is a function that converges to
zero when if the sequence {ξt}t converges, a warm-restart strategy using µ̂t as the
initial point to the subproblem maxµDρ(µ, ξt+1) is beneficial, as characterized by
the following lemma.

Lemma 3.D.4 (Dual gap at warm start). Denote ∆0
t+1 := Dρ(µ̄t+1, ξt+1) −

Dρ(µt+1,0, ξt+1). If we let µt+1,0 = µ̂t, then

∆0
t+1 ≤ (4 + 2

ω
)∆̂t + (1 + 2ω)Γt, ∀ω > 0. (3.20)

3.D Proof of Theorem 3.6.1 and associated Corollaries 75

Proof. By definition, we have Dρ(µ̄t+1, ξt+1) = Dρ(µt+1,∗, ξt+1) = d(ξt+1). The
initial gap of µ at iteration t can then be decomposed as

∆0
t+1 = Dρ(µ̄t+1, ξt+1)−Dρ(µt+1,0, ξt+1) + d(ξt)− d(ξt)−Dρ(µ̂t, ξt) +Dρ(µ̂t, ξt)

=
[
d(ξt)−Dρ(µ̂t, ξt)

]
+
[
Dρ(µ̂t, ξt)−Dρ(µt+1,0, ξt+1)

]
+Dρ(µ̄t+1, ξt+1)− d(ξt)

=
[
Dρ(µ̄t, ξt)−Dρ(µ̂t, ξt)

]
+
[
Dρ(µ̂t, ξt)−Dρ(µ̂t, ξt+1)

]
+ d(ξt+1)− d(ξt)

= ∆̂t + 1
Ld
‖ĝt‖2 + d(ξt+1)− d(ξt)

Again, we used the gradient step ξt+1 = ξt − 1
Ld
ĝt, and recall that Aµ̂t = ĝt.

Now, we can bound the term ‖ĝt‖2 from above using the fact that

1
Ld
‖ĝt‖2 = 1

Ld

[
‖gt‖2 + 2〈gt, ĝt − gt〉+ ‖ĝt − gt‖2

]
≤ 1
Ld

[
(1 + ω)‖gt‖2 + (1 + 1/ω)‖ĝt − gt‖2

]
,

where the last inequality stems from the Cauchy-Schwarz inequality 〈gt, ĝt −
gt〉 ≤ ‖gt‖ ‖ĝt − gt‖ and the fact that for any any a, b ∈ R and ω > 0, we have
2ab ≤ ωa2 + b2/ω.

Combining the upper bound of d(ξt+1)− d(ξt) from eq.(3.19), we get

∆0
t+1 ≤ ∆̂t + 3ω + 2

2ωLd
‖ĝt − gt‖2 + 2ω + 1

2Ld
‖gt‖2. (3.21)

Here, we can use again Lemma 3.D.2 and the fact that 1
2Ld
‖gt‖2 ≤ Γt, which is

due to the smoothness of d(ξ). It follows that

∆0
t+1 ≤

(
4 + 2

ω

)
∆̂t +

(
1 + 2ω

)
Γt, ∀ω > 0.

3.D.3 Proof of Theorem 3.6.1
Combining Lemma 3.D.3 and 3.D.4, we now show that IDAL enjoys a linear
convergence rate if we take a fixed number of inner iterations to estimate the
gradient.

Theorem 3.6.1 (Linear convergence of the outer iteration). Let A be an algorithm
that approximately solves maxµDρ(µ, ξt) in the sense that

∃β ∈ (0, 1), E[∆̂t] ≤ β E[∆0
t].

Then, ∃κ ∈ (0, 1) characterizing d(ξ) and C > 0, such that, if λmax(β) is the largest
eigenvalue of the matrix

M(β) =
[
6β 3β
1 1− κ

]
,

76 Inexact Dual Augmented Lagrangian Method for CRF Learning

then after Tex iterations of Algorithm 1 we have∥∥∥∥∥E[∆̂Tex]
E[ΓTex]

∥∥∥∥∥ ≤ C λmax(β)Tex

∥∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥∥ .
Proof. Note that Γt+1 − Γt = d(ξt+1)− d(ξt). By using Lemma 3.D.3, we have an
upper bound on Γt+1 in terms of Γt and ∆̂t, namely

Γt+1 ≤ ∆̂t + (1− κ) Γt with κ = τ

Ld
. (3.22)

On the other hand, we can also derive an upper bound on ∆̂t+1 in terms of Γt and
∆̂t. To achieve that, we relate the inner problem with Γt by running the steps on
µ until E[∆̂t+1] ≤ (1− π)TinE[∆0

t+1] ≤ β E[∆0
t+1], which means Tin ≥ log β

log(1−π) . By
Lemma 3.D.4, we have

E[∆̂t+1] ≤ β E[∆0
t+1] ≤ β

(
4 + 2

ω

)
E[∆̂t] + β(1 + 2ω)E[Γt]. (3.23)

Combining eq.(3.23) and eq.(3.22), and taking expectations on both sides, we get[
E[∆̂t+1]
E[Γt+1]

]
≤M

[
E[∆̂t]
E[Γt]

]
(3.24)

Since by definition, all the elements of M are positive, we can telescope a sequence
of matrix multiplications to get[

E[∆̂Tex]
E[ΓTex]

]
≤M

[
E[∆̂Tex−1]
E[ΓTex−1]

]
≤ · · · ≤MTex

[
E[∆̂0]
E[Γ0]

]
(3.25)

Assuming the eigen decomposition of M takes the form M = PDP−1, then
M t = PDtP−1. Applying norms on both sides of the vector inequality, we have∥∥∥∥∥E[∆̂Tex]

E[ΓTex]

∥∥∥∥∥ ≤ ‖P‖op λmax(β)Tex‖P−1‖op

∥∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥∥ . (3.26)

Note that C = ‖P‖op‖P−1‖op is a constant.

3.D.4 Proofs of Corollary 3.6.2 and Corollary 3.6.3
Corollary 3.6.2. If A is a linearly convergent algorithm with rate π and if it runs
for Tin iterations, such that, for some β : λmax(β) < 1, we have (1 − π)Tin ≤ β,
then E[∆̂t] and E[Γt] converge linearly to 0.
Proof. If the algorithm A for the inner loop is linearly convergent, it implies that,
after Tin iterations,

E[∆̂t] ≤ (1− π)TinE[∆0
t] ≤ β E[∆0

t].

Then, by Theorem 3.6.1, we have∥∥∥∥∥E[∆̂t]
E[Γt]

∥∥∥∥∥ ≤ C λmax(β)t
∥∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥∥ .
As t→ +∞, both E[∆0

t] and E[∆0
t] converge to zero linearly.

3.D Proof of Theorem 3.6.1 and associated Corollaries 77

We restate Corollary 3.6.3 in a more detailed way.

Corollary 3.D.1 (Corollary 3.6.3). Let σ denote the strong convexity constant
of µ 7→ Dρ(µ, ξ) and Ld the smoothness constant of d. Assume that (‖ξt‖2)t∈N is
almost surely bounded by a constant B. Then the squared residuals to the constraint
Aµ = 0 satisfy

1
2‖Aµ̂

t‖2
2 ≤ 2LdΓt + 2

σ
‖A‖2

op∆̂t.

Furthermore, if we let D∞(µ) := 〈`, µ〉 − γF ∗I (µ) − 1
2λ‖Ψµ‖

2
2, so that we have

D(µ) = D∞(µ)− ι{Aµ=0}, then (given that µt ∈ I throughout the algorithm) the
gap between the smooth part of the objective in µ̂t and at the optimum can be
bounded as follows

|D∞(µ̂t)−D∞(µ?)| ≤ B
√

2Ld Γt+B
‖A‖op√

σ

√
2∆̂t+

(
1+2Ld

ρ

)
Γt+

(
1+2
‖A‖2

op

ρσ

)
∆̂t.

Finally, if Γt and ∆̂t converge to 0 linearly then both the residuals ‖Aµ̂t‖2
2 and the

gap in objective value |D∞(µ̂t)−D∞(µ?)| converge to 0 linearly.

Proof. For the first inequality, by Lemma 3.D.1 we know that d is an Ld-smooth
function. It is then a standard result (see e.g. Nesterov 2013, Thm 2.1.5) that we
therefore have ‖∇d(ξt)‖2

2 ≤ 2Ld(d(ξt)− d(ξ?)) = 2LdΓt. But since ∇d(ξt) = Aµ̄t,
and using the strong convexity of µ 7→ Dρ(µ, ξ), we have

1
2‖Aµ̂

t‖2
2 ≤ ‖Aµ̄t‖2

2 + ‖A‖2
op‖µ̄t − µ̂t‖2

2 ≤ 2LdΓt + 2
‖A‖2

op

σ
∆̂t.

For the second inequality, by definition of D∞, we have

Dρ(µ, ξ) := D∞(µ) + 〈ξ, Aµ〉 − 1
2ρ‖Aµ‖

2
2, andD∞(µ?) = D(µ?).

But then we have

|D∞(µ̂t)−D∞(µ?)| = |D∞(µ̂t)−Dρ(µ̂t, ξt)|+ |Dρ(µ̂t, ξt)−Dρ(µ̄t, ξt)|
+ |Dρ(µ̄t, ξt)−D∞(µ?)|

≤ |〈ξt, Aµ̂t〉|+ 1
2ρ‖Aµ̂

t‖2
2 + ∆̂t + Γt,

and

|〈ξt, Aµ̂t〉|+ 1
2ρ‖Aµ̂

t‖2
2 ≤ B‖Aµ̄t‖+B‖A‖op‖µ̂t−µ̄t‖2+1

ρ
(‖Aµ̂t‖2

2+‖A‖2
op‖µ̂t−µ̄t‖2

2),

which yields the result using the same inequalities as before.
Finally, to show the implications of linear convergence, by Lemma 2.3 of Hong

and Luo (2017), there exists τ ′ > 0 such that ‖∇d(ξ)‖ ≥ τ ′‖ξ − ξ?‖. So that,
since ‖∇d(ξt)‖2

2 ≤ 2LdΓt, we have that if the sequence (Γt)t∈N is bounded then
so is (ξt)t∈N. Letting B be a bound on ‖ξt‖ the previous statements shows the
results.

78 Inexact Dual Augmented Lagrangian Method for CRF Learning

3.D.5 Proofs of Corollaries 3.6.4 and Corollary 3.6.5
Corollary 3.6.4 (Total number of inner updates). With the notations of the
previous corollary, for any β ∈ (0, 1) such that λmax(β) < 1, it is possible to obtain
E[∆̂t] ≤ ε and E[Γt] ≤ ε with a total number of inner iterations Ttot := TinTex such
that

Ttot ≥
log(β)

log λmax(β) log(1− π) log(ε).

Proof. To guarantee that (1− π)Tin < β requires that Tin ≥ log(1−π)
log(β) and to guaran-

teed that λmax(β)Tex < ε requires similarly that Tex ≥ log(ε)
log(λ(β)) . Taking the product

of these inequalities yields the result.

Corollary 3.6.5 (Convergence rate). If κ < 1
2 and α = 1

12 , if Tin ≥ log(ακ)
log(1−π) , then,

there exist a constant C ′ > 0 such that after a total of t Tin + s inner updates, we
have

E[∆s
t + Γt] ≤ C ′

(
1− κπ

2 log(12/κ)

)t Tin+s
.

Proof. Using solving the quadratic formula for the largest eigenvalue of a two-by-
two matrix yields

λmax(β) = (1− κ+ 6β) +
√

(1− κ− 6β)2 + 12β.

It is immediate to verify that λmax(β) < 1 if and only if β < 1
3

κ
1+2κ . This shows

that we need to choose β = ακ with α < 1
3(1+2κ) . So in particular, if α < 1

9 , then
the previous inequality is satisfied for any 0 < κ < 1.

Moreover, if κ ≤ 1
2 and α < 1

6 , we have λmax(β) = λmax(ακ) < 1− κ(1− 6α).
Indeed, letting x = 3β, and α′ = 3α, we have

2λmax(β) = (1− κ+ 2x) +
√

(1− κ− 2x)2 + 4x

= 1− κ+ 2x+
√

(1− κ)2 + 4xκ+ 4x2

= 1− κ+ 2α′κ+
√

(1− κ)2 + 4α′κ2 + 4α′2κ2

≤ 1− κ+ 2α′κ+
√

(1− κ)2 + 4α′κ(1− κ) + 4α′2κ2

≤ 2 (1− κ+ 6ακ).

Setting α = 1
12 , given that the rate r is r = 1 − exp

(
log(1−π) log(λmax(β))

log(β)

)
, we

have

r ≥ 1− (1− π)
log(1−κ2)
log(κ12) ≥

log(1− κ
2)

log(κ12) π ≥ κ

−2 log(κ12) π,

where, for the second and the third inequality, we used the fact that log(1− z) ≥ z
respectively for z = π and for z = −κ

2 .

3.E Convergence results with SDCA 79

3.E Convergence results with SDCA

In this section, we specify the detailed form of Dρ(µ, ξ), and show how to apply the
proof scheme of Shalev-Shwartz and Zhang (2016) to SDCA for the maximization of
Dρ(µ, ξ) w.r.t. µ in order to prove Proposition 1. We first write a fully decomposed
expression of Dρ(µ, ξ). We have:

Dρ(µ, ξ) =
∑
c∈C
〈`c, µc〉 − f ∗c (µc)−

1
2λ

∑
τ∈T

∥∥∥∥ ∑
c∈Cτ

Ψcµc

∥∥∥∥2

− 1
2ρ
∑
e∈E
i∈e

‖µi − Aiµe‖2 +
∑
e∈E
i∈e

〈ξei, µi − Aiµe〉, (3.27)

where −f ∗c (µc) = γhc(µc)− ι4c(µc).
We assume here that the entropy surrogate used is such that hc is σc-strongly

concave w.r.t. µc.
In particular this corresponds to two possible choices:

• The naive Gini entropy, for which hc(µc) = (1− ‖µc‖2
2).

• The Gini-OTRW entropy (see Appendix 3.C) for which, given positive
numbers ρi, ρi|j and ρj|i for all nodes and edges, we have

– hi(µi) = ρiki(1− ‖µi‖2
2) for i ∈ V

– hij(µij) = hi|j(µij) + hj|i(µij) for {i, j} ∈ E with hi|j(µij) =
kiρi|j(ε‖Ajµij‖2

2 − kj‖µij‖2
2)

for ε < 1 which is σc-strongly concave in µc with σi = 2kiρi if i ∈ V else
σ{i,j} = 2(1 − ε)kikj(ρtij + ρtji). (For ε = 1, the surrogate is not strongly
concave, and a modification of the decomposition into a separable terms and
a smooth term must be used to leverage strong convexity: see the discussion
in Section 6.2 after Proposition 2).

The proof of convergence for SDCA is based on showing that the expected
increase in dual objective provides an upper bound on a measure of duality gap. For
the problem, we are considering the gap of interest is gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ)−
Dρ(µ, ξ), which is an upper bound on the duality gap Pρ(w, ξ)−Dρ(µ, ξ). It can

80 Inexact Dual Augmented Lagrangian Method for CRF Learning

be decomposed as follows:

gap(w, δ, µ, ξ) =
[
γFI(`+ Ψᵀw + Aᵀδ) + γF ∗I (µ)− 〈`+ Ψᵀw + Aᵀδ, µ〉

]
+
[
λ

2‖w‖
2 + 1

2λ‖Ψµ‖
2 − 〈−w,Ψµ〉

]
+
[
ρ

2‖ξ − δ‖
2 + 1

2ρ‖Aµ‖
2 − 〈ξ − δ, Aµ〉

]
=

[∑
c∈C

f ∗c
(

1
γ
θ̃c(w, δ)

)
+ f ∗c (µc)− 〈θ̃c(w, δ), µc〉

]

+
[∑
τ∈T

λ

2‖wτ‖
2 + 1

2λ‖
∑
c∈Cτ

Ψcµc‖2 − 〈−wτ ,
∑
c∈Cτ

Ψcµc〉
]

+
[∑
e∈E

∑
i∈e

ρ

2‖ξei − δei‖
2 + 1

2ρ‖µi − Aiµi‖
2 − 〈ξei − δei, µi − Aiµi〉

]
,

(3.28)

where θ̃c is defined by

θ̃c(w, δ) :=

`i + Ψᵀ

iwτi +
∑
e3s

δei for c = i ∈ V ,

`e + Ψᵀ
ewτe −

∑
i∈e

Aᵀ
i δei for c = e ∈ E .

(3.29)

We now proceed to characterize the progress of the algorithm at each iteration,
and to that end, we introduce appropriate notations. In particular, since ξ is fixed
during the algorithm, we drop the dependance on ξ in different functions: Denote
the objective of the subproblem w.r.t. clique c as

Dρ,c(µc, µs−c) := −f ∗c (µc)− r(µc, µs−c), (3.30)

with r defined by

r(µc, µs−c) := 1
2λ

∥∥∥∥ ∑
b∈Cτc\{c}

Ψbµ
s
b + Ψcµc

∥∥∥∥2

+

∑
e3c

1
2ρ‖µi − Aiµ

s
e‖2 − 〈µi,

∑
e3i

ξei + `i〉, c = i ∈ V ,

∑
i∈e

1
2ρ‖µ

s
i − Aiµe‖2 − 〈µe,−

∑
i∈e

Aᵀ
i ξei + `e〉, c = e ∈ E .

It is straightforward to show that r is convex and smooth with cliquewise smooth-
ness constants

Li = 1
λ
eigmax(Ψᵀ

iΨi) + |{e : e 3 i}|
ρ

, i ∈ V

Le = 1
λ
eigmax(Ψᵀ

eΨe) + 1
ρ

∑
i∈e

eigmax(Aᵀ
iAi), e ∈ E .

The proof of convergence hinges on the following key lemma.

3.E Convergence results with SDCA 81

Lemma 3.E.1. Taking one of the following updates on µc with µ−c fixed:

• µs+1
c = arg maxµc Dρ,c(µc, µs−c).

• or, if u ∈ ∂fc(θ̃c(ws, δs)), where fc is the conjugate function of f ∗c ,

solve α̂ = arg max
α∈[0,1]

Dρ,c(µsc + α(u− µsc);µs), and set µs+1
c = µsc + α̂(u− µsc).

Then, with π = minc∈C σc
|C|(σc+Lc) , the following inequality holds

Ec[Dρ(µs+1, ξ)−Dρ(µs, ξ)] ≥ π Ec[P̃ρ(ws, δs, ξ)−Dρ(µs, ξ)], ∀ξ,

where ws, δs are updated to maintain the optimality conditions:

ws = −1
λ

Ψµs, δs = ξ − 1
ρ
Aµs.

Proof. Consider the following quantity:

D̆ρ,c(µc;µs) := −f ∗c (µc)− r(µs)− 〈∇µcr(µs), µc − µsc〉 −
Lc
2 ‖µc − µ

s
c‖2.

We have D̆ρ,c(µc;µs) ≤ Dρ,c(µc;µs−c), since µc 7→ r(µc, µs−c) is Lc-smooth.
First, for the update µs+1

c = arg maxµc Dρ,c(µc, µs−c), we have that, for any
direction u− µsc and any step size α ∈ [0, 1]

Dρ(µs+1, ξ)−Dρ(µs, ξ) = Dρ,c(µs+1
c , µs−c)−Dρ,c(µsc, µs−c)

≥ Dρ,c(µsc + α(u− µsc), µs−c)−Dρ,c(µsc, µs−c)
≥ D̆ρ,c(µsc + α(u− µsc);µs)−Dρ,c(µsc, µs−c). (3.31)

Showing the desired inequality for the second form of update thus implies the
inequality for the first type of update. Expliciting D̆ρ,c(µsc + α(u − µsc);µs), we
have

D̆ρ,c(µsc + α(u− µsc);µs) =− f ∗c (µsc + α(u− µsc)) (3.32)

− r(µs)− 〈∇µcr(µs), α(u− µsc)〉 −
α2Lc

2 ‖u− µsc‖2.

Since f ∗c (u) assumed σc-strongly convex, we have

f ∗c (µsc + α(u− µsc)) ≤ αf ∗c (u) + (1− α)f ∗c (µsc)−
σc
2 α(1− α)‖u− µsc‖2

2. (3.33)

Combining eq.(3.32) and eq.(3.33), we obtain

D̆ρ,c(µsc + α(u− µsc);µs) ≥ −α
(
f ∗c (u)− f ∗c (µsc) + 〈∇µcr(µs), u− µsc〉

)
(3.34)

− f ∗c (µsc)− r(µs) +
(
σc
2 α(1− α)− α2Lc

2

)
‖u− µsc‖2.

82 Inexact Dual Augmented Lagrangian Method for CRF Learning

Now, if we choose u ∈ ∂fc
(
−∇µcr(µs)

)
, by Fenchel conjugacy, it follows that

fc
(
−∇µcr(µs)

)
= −f ∗c (u)− 〈∇µcr(µs), u〉.

One can easily see that θ̃c(ws, δs) = −∇µcr(µs) by maintaining the optimality
conditions

∀c ∈ C : wsτc = −1
λ

∑
b∈Cτ

Ψbµ
s
b,

∀e ∈ E , i ∈ e : δsei = ξei −
1
ρ

(µsi − Aiµse).

Thus, we can further simplify eq.(3.34) as

D̆ρ,c(µsc + α(u− µsc);µs) ≥ α
(
fc(θ̃c(ws, δs)) + f ∗c (µsc)− 〈θ̃c(ws, δs), µsc〉

)
+Dρ,c(µsc, µs−c) +

(
σc
2 α(1− α)− α2Lc

2

)
‖u− µsc‖2

≥ Dρ,c(µsc, µs−c) + α
(
fc(θ̃c(ws, δs)) + f ∗c (µsc)− 〈θ̃c(ws, δs), µsc〉

)
, (3.35)

provided that σc
2 α(1− α)− α2Lc

2 ≥ 0, that is, 0 ≤ α ≤ σc
σc+Lc .

The key observation is that

gap(w, δ, µ, ξ) =
∑
c∈C

fc(θ̃c(w, δ)) + f ∗c (µc)− 〈θ̃c(w, δ), µc〉 (3.36)

if we maintain the optimality conditions. By using eq.(3.36) and taking expectation
Ec w.r.t. a uniform random choice of the clique c on both sides of eq.(3.35), we
guarantee that, for α ∈ [0, σc

σc+Lc],

Ec
[
α

|C|
gap(ws, δs, µs, ξ)

]
≤ Ec

[
D̆ρ,c(µsc + α(u− µsc);µs)−Dρ,c(µsc, µs−c)

]
≤ Ec[Dρ(µs+1, ξ)−Dρ(µs, ξ)].

So, we can choose the maximum value σc
σc+Lc for α. It follows that

Ec[Dρ(µs+1, ξ)−Dρ(µs, ξ)] ≥
(

min
c∈C

σc
|C|(σc + Lc)

)
Ec[gap(ws, δs, µs, ξ)],

as desired.

We can now prove Proposition 3.6.6.

Proposition 3.6.6. If A is SDCA, let |C| be the total number of cliques, σc the
strong convexity constant of f ∗c , and Lc the Lipschitz constant of µc 7→ r(µ), then
A is linearly convergent with rate π = minc∈C σc

|C|(σc+Lc) .

3.E Convergence results with SDCA 83

Proof. Denote ∆s
t := Dρ(µ̄t, ξt)−Dρ(µt,s, ξt). Since we update µt,s to µt,s+1 using

SDCA, according to Lemma 3.E.1, we have

Ec[∆s
t −∆s+1

t] = Ec[Dρ(µt,s+1, ξt)−Dρ(µt,s, ξt)]
≥ π Ec[P̃ρ(w(µt,s), δ(µt,s, ξt), ξt)−Dρ(µt,s, ξt)]
≥ π Ec[Dρ(µ̄t, ξt)−Dρ(µt,s, ξt)] = πEc[∆s

t],

and π = minc∈C σc
|C|(σc+Lc) . The above inequality implies that

Ec[∆s+1
t] ≤ (1− π)Ec[∆s

t] ≤ (1− π)s+1 Ec[∆0
t].

The result follows if we set Tin = s+ 1.

3.E.1 Proof of Propositions 3.6.7 and 3.6.8
Proposition 3.6.7. Let ŵt = w(µ̂t). If A is SDCA, then

E[P (ŵt)− P (w?)] ≤ 1
π
E[∆̂t] + E[Γt].

Proof. Recall that P (w?) = D(µ?) = Dρ(µ?, ξ?) by Corollary 3.B.4.

P (wt,s)− P (w?) = P (wt,s)−Dρ(µ̄t, ξt) +Dρ(µ̄t, ξt)− P (w?)
= P (wt,s)−Dρ(µ̄t, ξt) +Dρ(µ̄t, ξt)−Dρ(µ?, ξ?)
≤ P̃ (wt,s, δt,s, ξt)−Dρ(µ̄t, ξt) + d(ξt)− d(ξ?)
≤ P̃ (wt,s, δt,s, ξt)−Dρ(µt,s, ξt) + d(ξt)− d(ξ?)
= gap(wt,s, δt,s, µt,s, ξt) + Γt

If A is SDCA, by Lemma 3.E.1, we have

E[P (wt,s)− P (w?)] = E[gap(wt,s, δt,s, µt,s, ξt) + Γt]

≤ E
[1
π

(∆s
t −∆s+1

t) + Γt
]

≤ 1
π
E[∆s

t] + E[Γt].

Given that ∆̂t = ∆Tin
t , the result follows by setting s = Tin.

Proposition 3.6.8 (Linear convergence in the primal). Let wt,s = w(µt,s). If A
is a linearly convergent algorithm and the function µ 7→ −Happrox + 1

2ρ‖Aµ‖
2
2 is

strongly convex, then P (wt,s)− P (w?) converges to 0 linearly.

Proof. Note that, if σ is the strong convexity constant of Dρ w.r.t. µ, then given
that Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ) with

P̃ρ(w, δ, ξ) = γFI

(
θ(w) + Aᵀδ

γ

)
+ ρ

2‖δ − ξ‖
2 + λ

2‖w‖
2
2,

84 Inexact Dual Augmented Lagrangian Method for CRF Learning

we also have

Pρ(w, ξ) = max
µ

[
〈µ,Ψᵀw〉+ γHapprox(µ) + 〈ξ, Aµ〉 − 1

2ρ‖Aµ‖
2
2

]
+ λ

2‖w‖
2
2,

which shows that w 7→ Pρ(w, ξ) is a function with Lipschitz gradient as the sum
of w 7→ λ

2‖w‖
2
2 and of the Fenchel conjugate of a strongly convex function. Let

LP be its Lipschitz smoothness constant and note that it does not depend on the
value of ξ. We thus have

Pρ(wt,s, ξt)− Pρ(w̄t, ξt) ≤ LP‖wt,s − w̄t‖2
2.

Then given the representer theorem, and by strong convexity of µ 7→ Dρ(µ, ξ) we
have

‖wt,s − w̄t‖2
2 = ‖Ψ(µt,s − µ̄t)‖2

2 ≤
1
σ
‖Ψ‖2

op(Dρ(µt,s, ξt)−Dρ(µ̄t, ξt))

So that, since P (wt,s) ≤ Pρ(wt,s, ξt) and P (w?) = Pρ(w?, ξ?), we have

P (wt,s)−P (w?) ≤ Pρ(wt,s, ξt)−Pρ(w̄t, ξt)+Pρ(w̄t, ξt)−Pρ(w?, ξ?) ≤
LP
σ
‖Ψ‖2

op ∆s
t+Γt.

Finally, global linear convergence in the primal also follows from the linear conver-
gence of ∆̂t and Γt.

3.F Notation summary
Given the number of notations in the main paper, we summarize some of them
in Tables 3.F.1,3.F.2 and 3.F.3. The block matrices Ψ and A are schematically
drawn below to illustrate their structure.

Ψ =

c

...
τc · · · Ψc

 A =

i ij

... ...
ij · · · Iki −Ai

3.F Notation summary 85

Table 3.F.1: Notations for sets

Notation Dimension Description
C the set of cliques
E the set of edges
V the set of nodes
Yi = Sk Sk := {u ∈ {0, 1}k | ‖u‖1 = 1}
Yc

∏
i∈c ki Yc :=×i∈c Yi

Y ∏
i∈V ki Y :=×i∈V Yi

T the set of clique types
Cτ the set of cliques of type τ
M the marginal polytope
L the local polytope
I I := ∏

i∈V ∆ki ×
∏
e∈E ∆ke

Table 3.F.2: Notations for variables, parameters and functions

Notation Domain Description
ki N the number of values that Yi can take
kc N kc := |Yc| =

∏
i∈c ki

τ N the type of a clique
τc N the type of clique c
wτ Rdτ the parameter shared by all cliques with type τ
w R

∑
τ
dτ w := [wτ]τ∈T

φc(x, yc) Rdτc the feature vector associated with the clique c given Yc = yc
Z(x,w) R+∗ the partition function of p(y|x;w)
`c(y(n)

c , yc) R+ the user defined loss function associated with the clique c
γ (0,+∞) the temperature parameter of the loss-augmented CRF
Ψ(n)
c Rdτc×kc Ψ(n)

c :=
[
φc(x(n), yc)− φc(x(n), y(n)

c)
]
yc∈Yc

Ψ(n) R
∑

τ
dτ×
∑

c
kc see the drawing

`(n)
c Rkc `(n)

c :=
[
`c(y(n)

c , yc)
]
yc∈Yc

`(n) R
∑

c
kc `(n) := [`(n)

c]c∈C
θ(n)
c (w) Rkc θ(n)

c (w) := Ψ(n)
c

ᵀ
wτc + `(n)

c

θ(n)(w) R
∑

c
kc θ(n)(w) := [θ(n)

c (w)]c∈C, the natural parameter
F R

∑
c
kc → R the log partition function of θ

T (y) R
∑

c
kc the sufficient statistics

µc Rkc the mean parameter associated with the clique c
µ R

∑
c
kc the mean parameter

F ∗ R
∑

c
kc → R the Fenchel conjugate of F

ιC R
∑

c
kc → {0,+∞} the indicator function of set C

λ R+ the coefficient of the regularizer
Ai Rki×ke the matrix encoding the marginalization constraint for i in e.
A R

∑
e

∑
i∈e ki×

∑
c
kc see the matrix form

86 Inexact Dual Augmented Lagrangian Method for CRF Learning

Table 3.F.3: Notations smoothness, strong convexity constant and related quantities

Notation Description
Ld the Lipschitz constant of ∇d(ξ)
τ the constant of PL inequality for d(ξ)
σc the strong convexity constant of µc 7→ −HApprox(µ)
Lc the Lipschitz constant of µc 7→ 1

λ
Ψᵀw(µ) + 1

ρ
Aᵀδ(µ, ξt)

87

Chapter

4
A Survey on Over-Parameterization

in Deep Learning:
Compression and Generalization

Abstract
Deep neural networks are commonly over-parameterized, namely, the parame-
terization is redundant, and the number of parameters can be even larger than
the number of training points. Over-parameterization has shown to be an inter-
esting property for both optimization and generalization in the sense that it not
only makes the optimization easier but also assists the learning to pursue a better
generalization. In this chapter, we will review representative neural network ar-
chitectures, state-of-the-art network compresssion techniques and the connection
between the compression and the generalization of over-parametrized models. In
addition, we will cover a related problem – knowledge distillation, which enables a
relaxation of the training setting of over-parameterized models with an application
on small-data-small-network training.
The material of this chapter is based on a literature review up to November 2018.
Since the field of deep learning theory is evolving sufficiently fast, some opinions
and arguments may not be valid anymore.

88 A Survey on Over-Parameterization in Deep Learning

4.1 Introduction
Deep learning has made remarkable progress on pushing the edge of machine
learning tasks such as achieving nearly human level image classification (Krizhevsky
et al. 2012b, Sun et al. 2014), defeating world champions in strategy games (Silver
et al. 2017, OpenAI 2017) and outscoring top humans in reading and comprehension
tests (Alibaba 2018).

At the heart of deep learning, the key assumption is that these mappings can
be well approximated by multilayered artificial neural networks, also known as
deep neural networks (DNNs), which have been proven to be universal function
approximators (Cybenko 1989a). Training DNNs with backpropagation (BP) dates
back at least to 1980s (Rumelhart et al. 1986). An extensive review on the history
of deep learning can be found in Schmidhuber (2015).

The recent success of deep learning should be attributed to the development of
general-purpose processing on graphics processing units (GPGPU), stochastic gra-
dient algorithms, and open-source software frameworks. With stochastic gradient
descent (SGD) (Robbins and Monro 1985) or its variants such as ADAM (Kingma
and Ba 2014), modern deep neural networks (DNNs) (Krizhevsky et al. 2012b,
Szegedy et al. 2015b, Simonyan and Zisserman 2014a, He et al. 2016a) are capable
of training on potentially infinitely large datasets and achieve good performance
on a wide range of problems. The DNN training with backpropagation from the
outputs to the inputs is also called end-to-end training. In other words, the learning
of the data representation and the final predictor are carried out simultaneously.
However, there are still many mysteries within this end-to-end framework. They
have recently drawn much attention in the community. For example,

• The optimization “puzzle”: given that the learning problems of DNNs are
highly non-convex, it is not clear why SGD with a proper random initial-
ization converges to a global minima (near zero training error) with high
probability (Kawaguchi 2016, Wu et al. 2017). Moreover, it has been em-
pirically observed that over-parameterized DNNs, namely, DNNs possessing
hundreds of millions of parameters, are easier to train (Hinton et al. 2012,
Denil et al. 2013a).

• The generalization “puzzle”: classical learning theory suggests that over-
parameterized models will overfit the training data. Surprisingly, empirical
observations (Zhang et al. 2016, Neyshabur et al. 2018, Sagun et al. 2017)
find that, in the case of DNNs, increasing the model size often leads to better
generalization performance even without explicit regularization. DNNs are
able to achieve zero training error even with random labels (Zhang et al.
2016) implying that the complexity of DNNs is extremely high.

For the optimization puzzle, there are several existing works identify that the
non-convex problem of DNNs has geometrically elegant structure to facilitate the
optimization. Kawaguchi (2016) show that, for deep linear neural networks (namely
without non-linear activations), every local minima is a global minima, and every

4.1 Introduction 89

critical point that is not global is a saddle point. This result can be extended
to non-linear cases with extra conditions, such as the independent activation
assumption (Kawaguchi 2016) and the “one layer has more neurons than training
points” assumption (Nguyen and Hein 2018). Although these assumptions are
not always realistic (exceptions exist, e.g., Nguyen and Hein (2018)’s assumption
holds on VGGNet (Simonyan and Zisserman 2014a)), they do shed light on why
SGD works so well. In reality, bad local minima exists. But for over-parameterized
DNNs, Soudry and Hoffer (2017) show that, under mild assumptions, the volume
of the basin containing bad local minima is exponentially vanishing comparing to
that of the basin containing global minima as the number of data points increases.
Similar results have been reported by different authors (Soudry and Carmon 2016,
Haeffele and Vidal 2017, Wu et al. 2018a 2017) towards understanding the loss
lanscape of DNNs. Thus, it is very likely that the optimization puzzle is due to the
special structure of DNNs, and the over-parameterization induced by increasing
the depth and/or the width of a neural network does not only achieve a more
powerful model but also eliminate bad local minima (Lu and Kawaguchi 2017, Li
et al. 2017b).

The second puzzle reveals a more interesting property of DNNs, especially of the
over-parameterized ones. However, it does not entails that any DNN with a large
number of parameters will generalize. Consider the extreme case where the number
of hidden units goes to infinity, as considered in convex neural networks (Bengio
et al. 2006, Bach 2017). Just training the top layer, which is a convex problem,
will result in zero training error, as the randomly initialized hidden layer has all
possible features (Soudry and Hoffer 2017, Neyshabur et al. 2018). Obviously,
such an extreme case will have serious overfitting issues. On the other hand,
empirically designed DNNs often have good generalization although being heavily
over-parameterized. For example, the largest wide residual network considered by
Zagoruyko and Komodakis (2016c) has 500× more parameters than the size of
CIFAR-10 (Krizhevsky 2009a). VGGNet has even 138M parameters comparing to
1.2M images in ImageNet (Deng et al. 2009), which is already considered as one of
largest scale datasets. Thus, there must exist some implicit regularizations that are
common in the network architectures or in the optimizers. Many existing works
attempt to explain this phenomenon by, for example, the flat minima conjecture
(Hochreiter and Schmidhuber 1997b, Keskar et al. 2016, Wu et al. 2017), the
PAC-Bayes theory (Dziugaite and Roy 2017, Zhou et al. 2018, Pérez et al. 2018)
and the information theory perspective (Hinton and Van Camp 1993, Tishby and
Zaslavsky 2015, Achille and Soatto 2017). So far, the generalization puzzle is still
one of the hottest topics in deep learning.

Although over-parameterization is important from the modeling and the opti-
mization point of view, it is not necessarily a desired property from the computation
and the deployment aspects. It is not surprising that there is a huge redundancy in
DNNs. One could prune out even 99% parameters without hurting the model per-
formance (Han et al. 2015a). Therefore, a natural question emerges: can we design
a compact DNN which inherits the geometry and generalization properties of its
over-parameterized counterparts while only contains minimal parameters/weights

90 A Survey on Over-Parameterization in Deep Learning

to be learned?
To answer this question, I first study the common DNN architectures in

Section 4.2, the potential issues of DNNs in Section 4.3, and then review existing
model compression approaches in Section 4.4. It turns out that the generalization is
closely related to the compressibility of the model, which is formally characterized
by different theories, such as the minimum description length (MDL) principle
(Rissanen 1978, Hinton and Van Camp 1993) and the information bottleneck
principle (Tishby et al. 2000, Tishby and Zaslavsky 2015), for which I briefly
review in Section 4.5. Finally, in Section 4.6, I discuss the knowledge distillation
method, which offers a new but probably more straightforward way to mitigate
over-parameterization.

4.2 Deep Network Architectures

A neural network is a special composite function of the input signal in the sense
that the functions are connected in a way resembling the network of biological
neurons. A function in the neural network is sometimes referred as a (hidden) layer.
Obviously the input and the output are the first and the last layers respectively.

The computation from the input to the output is called the forward pass.
Accordingly, the backward pass occurs when we try to compute the derivatives
with respect to the layers as well as the parameters associated to the functions,
which is also known as the backpropagation– an application of chain rule.

The first neural network, called the threshold logic, was proposed by McCulloch
and Pitts (1943). Back to the time when backpropagation firstly gained recognition
(Werbos 1974, Rumelhart et al. 1986), the multilayer perceptron (MLP) was one of
the first neural networks considered in supervised learning (Cybenko 1989a), which
includes alternatively linear functions and non-linear functions such as sigmoid,
tanh, rectified linear unit (ReLU) and so on.

For specific purposes, different types of architecture are proposed. The most
common type is called feedforward neural network, such as the aforementioned
MLP. On the other hand, if there exists a function in the network that the previous
outputs from itself are used as inputs, the neural network is called recurrent neural
network (Rumelhart et al. 1986), which has an advantage in modeling arbitrarily
long sequences.

The recent development of neural networks is mainly focused on convolutional
neural networks (CNNs) (LeCun et al. 1998) due to their big success in image
classification (Krizhevsky et al. 2012b). CNNs were designed for images, inspired
by the structure of visual cortex, but they have been extended to other kinds of
data (Oord et al. 2016). Convolutional neural networks make use of the spatial
information in the input signals to enable weight sharing, which makes it invariant
to translations of the input. Besides, weight sharing significantly reduces the
number of parameters to be learned compared to fully connected neural networks
(e.g. MLPs) with the same input-output dimensions. We list several commonly
used CNN architectures in the following, and summarize their characteristics in

4.2 Deep Network Architectures 91

CNN #parameters computation
size(M) Conv% FC% FLOPS(G) Conv% FC%

LeNet-5 0.431 6.0 94.0 0.0066 87.8 12.2
AlexNet 61 3.8 96.2 0.72 91.9 8.1
VGGNet 138 6.3 93.7 2.6 96.3 3.7
NIN 7.6 100 0 1.1 100 0
GoogLeNet 6.9 85.1 14.9 1.6 99.9 0.1
ResNet-18 5.6 100 0 1.8 100 0
ResNet-50 12.2 100 0 3.8 100 0
ResNet-101 21.2 100 0 7.6 100 0

Table 1: The computation and size of common convolutional neural networks.

terms of the number of parameters and their computational costs (measured by
FLOPS) in Table 1.

• The LeNet proposed by LeCun et al. (1998) is one of the first convolutional
neural networks. The architecture starts with two convolutional layers,
each of which followed by a subsampling layer, to build up a task specific
representation from the input. Then, there are two fully connected (FC)
layers taking the representation as input to output the final classification
scores/probabilities.

• AlexNet (Krizhevsky et al. 2012b) can be seen as a deeper and wider extension
of the LeNet, which leads to a significant improvement in the accuracy of
image classification. It was considered as the “return” of deep learning. There
are other key differences between AlexNet and LeNet. Rather than using
saturated nonlinear activations, such as sigmoid function or tanh function,
AlexNet uses the rectified linear units (ReLU) to mitigate the vanishing
gradient problem (Bengio et al. 1994). Besides, it also replaces average-
pooling operations with max-pooling operations in subsampling layers in
order to avoid the blur effects. Apart from the architecture differences, it is
one of the first examples showing that dropout (Hinton et al. 2012) can be used
after linear or convolutional layers to avoid overfitting in overparameterized
networks. AlexNet has 61 millions parameters across five convolutional layers
and three fully connected layers. The spatial resolution is reduced three
times before the full connected layers.

• VGGNet (Simonyan and Zisserman 2014a) is an even larger variant of
AlexNet with 13 convolutional layers and 5 max-pooling layers. It is the
first neural network using small convolution filters (e.g. 3 × 3 in spatial
dimensions), which is based on an empirical observation that large receptive

92 A Survey on Over-Parameterization in Deep Learning

fields 1 can be preserved by stacking multiple small convolutions. However,
VGGNet has 138 millions of parameters across 13 convolutional layers and 3
fully connected layers in order to achieve a deep architecture, which makes
it one of the largest architectures in the literature.

• The network in network (NIN) (Lin et al. 2013a) starts a trend of fully
convolutional neural networks (Springenberg et al. 2014, Szegedy et al.
2015b, He et al. 2016a). It is easy to verify that a fully connected layer
with input dimension C ·H ·W and output dimension K is equivalent to a
convolutional layer including K convolutional kernels of shape C ×H ×W .
Thus, fully connected layers can be implemented by convolutions unless there
are computational concerns. A big advantage is that fully convolutional
CNNs do not require inputs to have uniform spatial dimensions. If the input
tensor is C ×H ×W , we get a K × 1× 1 output tensor. When the width
or the height of the input tensor is larger, the output tensor has spatial
dimensions larger than 1. To obtain a K × 1× 1 output tensor, the global
average-pooling over the spatial dimensions is introduced. NIN sheds light
on the special case of convolution when H = W = 1 (i.e. 1× 1 convolution)
can be seen as applying MLP on each bin of the input tensor whose shape is
C × 1× 1. This insight has been very influential on recent neural network
architectures.

• GoogLeNet (Szegedy et al. 2015b) was one of the first attempts to reduce the
computational overhead without sacrificing the performance. The inception
module (a.k.a. the bottleneck layer) was first introduced in GoogLeNet.
Inspired by NIN, GoogLeNet uses 1 × 1 convolutions to reduce 4 times
the number of input channels before going through an computationally
expensive convolutional layer. This saved a large number of operations while
maintaining the performance. There are several extensions of GoogLeNet,
such as Inception V2 (Ioffe and Szegedy 2015b) and V3 (Szegedy et al. 2016).
Apart from the architectural differences, the batch normalization (BN) is
introduced as an alternative regularizer to weight decay, dropout etc. BN
accelerates the training by reducing internal covariate shifts. It also alleviates
the problems of vanishing/exploding gradients.

• ResNet (He et al. 2016a) inherits the best elements of NIN and GoogLeNet,
which is now one of the most commonly used architectures. The key ingredient
introduced in this architecture is the skip connection, which further alleviates
the issues of vanishing/exploding gradients. Moreover, it is shown by Orhan
and Pitkow (2017) that the skip connections eliminate saddle points thus
the training of ResNet can potentially converge to a better local minima.
As a result, He et al. (2016a) demonstrated that there is no big technical
problems on training a neural network with a thousand layers. Zagoruyko

1Informally, it is the region in the image that involves in the computation of a neuron.

4.3 Memory and Energy Issues with Over-Parameterized DNNs 93

AlexNet

BN-AlexNet
BN-NINENet

GoogLeNet

ResNet-18
VGG-16

VGG-19

ResNet-34

ResNet-50

ResNet-101

ResNet-152

Inception-v3

Inception-v4
50

55

60

65

70

75

80

To
p-

1
ac

cu
ra

cy
 [%

]

0 5 10 15 20 25 30 35 40
Operations [G-Ops]

50

55

60

65

70

75

80

To
p-

1
ac

cu
ra

cy
 [%

]

BN-NIN

Inception-v3

Inception-v4

BN-AlexNet
AlexNet

VGG-16 VGG-19

ResNet-18

ResNet-34
ResNet-50

ResNet-101

ResNet-152

GoogLeNet
ENet

5M 35M 65M 95M 125M 155M

Figure 1: Left: The comparison of top-1 accuracy on the ImageNet dataset. Right: Top-1
accuracy vs. giga floating point operations per second. The top-1 accuracy is calculated on
the ImageNet dataset with a single forward pass. The number of parameters for a network is
demonstrated by the size of the disk, which is ranged from 5M to 155M . Source: Figure 1 & 2
in Canziani et al. (2016).

and Komodakis (2016c) studied the trade-off between increasing the number
of layers and increasing the number of parameters per layer, and proposed a
variant of ResNet called Wide ResNet.

For a more complete discussion on neural network architectures, we refer the
reader to the survey by Canziani et al. (2016). We show in Figure 1 a summary
picture taken from their paper.

4.3 Memory and Energy Issues with Over-
Parameterized DNNs

From Figure 1 and Table 1, we can see that all commonly used deep neural networks
contain millions of parameters, and require gigas of FLOPS for a single forward
pass. This situation has been mitigated in recent architectures by replacing fully
connected layers with convolutional layers and by using convolutions with small
kernels. In general, fully connected layers introduce more parameters but require
less FLOPS comparing to convolutional layers. However, none of the designs of
neural networks can avoid over-parameterization completely, even with a good
balance between the number of parameters and the FLOPS.

Inevitably, over-parameterization leads to inefficiency in memory and energy.
Moreover, the resulting model is hard to interpretable. Applications such as
embedded systems, internet of things and mobile phones are examples where
computers have limited processors, memory and batteries. The goal of such
resource limited applications is quite different from that of achieving human-level
performance. Deploying deep neural networks on embedded systems (Venieris et al.
2018) has become a recent trend towards intelligent mobile computing. However,
it is infeasible to design an architecture for each embedded system from scratch.

94 A Survey on Over-Parameterization in Deep Learning

One valid solution is to adaptively compress the universal model. Specifically,
according to the memory and computation requirements of a given application, we
reduce the storage of network parameters or eliminate less important parameters.
This is generally called model compression in deep learning.

Energy efficiency is another desideratum from an implementation perspective.
Regarding this perspective, Max Welling shared his opinion in his keynote talk
“Intelligence per kilowatthour” at ICML 2018 (Welling 2018):

In the 19th century the world was revolutionized because we could
transform energy into useful work. The 21st century is revolutionized
due to our ability to transform information (or data) into useful tools.
Driven by Moore’s law and the exponential growth of data, artificial
intelligence is permeating every aspect of our lives. But intelligence
is not for free, it costs energy, and therefore money. Evolution has
faced this problem for millions of years and made brains about a 100×
more energy efficient than modern hardware (or, as in the case of the
sea-squirt, decided that it should eat its brain once is was no longer
necessary). I will argue that energy will soon be one of the determining
factors in AI. Either companies will find it too expensive to run energy
hungry ML tools (such as deep learning) to power their AI engines, or
the heat dissipation in edge devices will be too high to be safe. The next
battleground in AI might well be a race for the most energy efficient
combination of hardware and algorithms.

We reuse an interesting plot in Figure 2 from Welling (2018) illustrating the
development of deep neural networks and the corresponding energy consumptions.
With such a rapid growth, by 2025, the hardware can host a neural network with
as many parameters as neurons in the human brain. However, digital computers
are not comparable with its biological counterpart in terms of energy efficiency.
Moreover, artificial neural networks usually only target on a single task. Without
model compression, we are simply wasting the resource of the earth.

4.4 Model Compression Approaches
Before discussing what is the best way to adaptively compress a neural network,
one may ask: is it possible to compress a pretrained network without sacrificing
its performance significantly? The answer is very likely, since it can be seen
from Table 1 and Figure 1 that the performance of a neural network is not fully
determined by the number of parameters. For example, ResNet-18 has only 5.6M
parameters comparing to VGGNet which has 138M parameters. However, their
top-1 accuracy and FLOPS are almost identical.

Denil et al. (2013a) shows that there is significant redundancy in the parame-
terization and that up to 95% parameters can be predicted from a small portion
of learned parameters. That is, parameters are not equally important. Li et al.
(2018), Giryes et al. (2016) argue that the key to learn a good representation of the
data is the architecture itself. With a good network architecture, a large portion

4.4 Model Compression Approaches 95

Figure 2: Energy consumption of deep neural networks. We will soon reach the capacity of the
human brain. Source: Welling (2018).

of parameters can be even random values. All of these observations shed light
on why model compression is possible. More intuitions and explanations will be
discussed in Section 4.5.

We now provide a brief survey for model compression, classifying these ap-
proaches in terms of their main characteristics.

Low-rank approximation

Not surprisingly, there are a large amount of weights close to zeros in a learned
neural network. Thus, the sparsity may be the first property to be explored in
order to reduce the model size. Given a pretrained neural network, the weights are
presented as matrices or tensors, Denton et al. (2014a), Jaderberg et al. (2014a)
explored the idea of low-rank approximation as a postprocessing step to optimize
the weight storage. Specifically, the original weight matrices/tensors are sparsely
reconstructed through a matrix/tensor decomposition. For example, Denton
et al. (2014a) perform a singular value decomposition for each convolutional layer,
and fine-tune the upper layers until the prediction performance is restored. They
achieve a speedup in convolutional layers by a factor of 2 to 3 times and a reduction
in parameters in fully connected layers by a factor of 5 to 10 times.

Weight pruning

Since not all weights are equally important, some weights can be pruned accord-
ing to some “saliency” criterion, which has been explored in the 90s by LeCun
et al. (1990a), Hassibi et al. (1993). Standard critera include magnitude based
thresholding, that is,

|w| < threshold,
and the minimal decrease in training loss (LeCun et al. 1990a, Hassibi et al. 1993):

min
q

{
min
δw

∆loss(δw) | δwq + wq = 0
}
.

96 A Survey on Over-Parameterization in Deep Learning

Weight pruning can also be done in an iterative way by gradually building
a mask of important weights (Han et al. 2015b). Retraining intervenes at each
iteration to update the masked weights. Alternatively, the mask can be a part of
the optimization. This was an idea proposed by Guo et al. (2016). They iteratively
solve

min
w,T

L(w � T),

where the mask T is a function of w; � denotes element-wise product.
It is also possible to prune out a whole convolutional filter. Liu et al. (2017)

associate a scaling factor (reused from a batch normalization layer) to each channel
in the convolutional layers. Then, a sparsity inducing regularization is imposed
on these scaling factors during training to automatically identify unimportant
channels. The channels with small scaling factor values will be pruned, followed by
finetuning to achieve comparable (or even higher) accuracy as a normally trained
full network.

Weight sharing

Weight sharing plays an important role in convolutional neural networks. This
idea has been further extended to design even more efficient convolutional modules
that directly build up efficient CNNs rather than compressing a pretrained one.

Flattened CNNs (Jin et al. 2014) allows for an acceleration of the feedforward
pass by replacing each C ×H ×W convolution with C × 1× 1, 1×H × 1, and
1×1×W convolutions, which can be seen as applying SVD on the original weights,
but this is trained in an end-to-end manner rather than through post-processing.

SqueezeNet (Iandola et al. 2016a) achieves AlexNet-level accuracy with 50
times fewer parameters. It employs strategies such as replacing 3×3 filters by 1×1
filters; decreasing the number of input channels for 3 × 3 filters; downsampling
late in the network so that convolution layers have large activation maps.

Other efficient CNNs including MobileNet (Howard et al. 2017a), ResNext (Xie
et al. 2017) and ShuffleNet (Ma et al. 2018), which are built upon efficient CNN
modules, such as grouped convolution, depthwise convolution, channel shuffle and
so on.

Note that all the aforementioned efficient CNNs can be combined with other
compression methods with a minor loss of accuracy.

Weight generated by a compact neural network

As mentioned by Denil et al. (2013a), it is possible to accurately predict the
remaining weights from only a few weights. This is due to the fact that weights
in learned networks tend to be structured. Inspired by this observation, a line of
research consists of several different ways to form a weight generator to achieve
model compression or relevant goals, which itself is a small network (i.e. a meta
model), but it generates the actual weights for a larger network for the main task.

• The fast-weight network was proposed by (Schmidhuber 1992) for MLPs,
in which one network produces context-dependent weight changes for a

4.4 Model Compression Approaches 97

second network. A subsequent work by Gomez and Schmidhuber (2005)
demonstrated practical applications for the fast-weight network in the con-
text of artificial control, where a generator network is learned by evolution
algorithms.

• The HyperNetworks (Ha et al. 2017a) was proposed to allow non-shared
weights for RNNs, since the weight sharing with recurrence was the main issue
that causes gradient vanishing and exploding problems. The hypernetwork
generates weights adaptively according to the layer-embedding vectors.

• The deep fried convnets (Yang et al. 2015) uses a special weight generator,
reparameterizing a fully connected layer with d inputs and n outputs by
the so called adaptive fastfood transform, which is a generalization of the
fastfood transform for approximating kernels. It reduces the storage and the
computation costs from O(nd) to O(n) and O(n log d) respectively.

• The dynamic filter networks by Jia et al. (2016) was proposed in the context
of video prediction and stereo vision. It depends on two related inputs. One
input is used to predict sample specific and location specific information,
forming the weights (i.e. filters) of the convolution, which will be applied on
another input.

• The Bayesian neural networks (Blundell et al. 2015, Lacoste et al. 2017)
can also be seen as a particular example of the weight generation, since it
actually learns a distribution of the weights rather than a point estimate. In
this case, the weight generator is exactly the distribution, generating weights
amounts to sampling weights.

Depending on how small the meta network is, the actual weights to be learned
is much less than learning the main network directly. It is certainly not the best
method to yield the best compression rate, since the size of the meta network is
not adaptive to different scenarios. Comparing to post-processing methods, such
as low-rank approximation and weight pruning, this method is able to train all
the modules in an end-to-end manner.

It is worth mentioning that the weight generating idea also has a wide applica-
tion in meta learning (Gordon et al. 2018, Garnelo et al. 2018a, Bertinetto et al.
2016, Gidaris and Komodakis 2018).

Quantization

It has been recognized back in the 90s that the weights and activations of the
neural networks do not take values in the whole real axis, thus they are not
necessarily stored in the floating point format (Fiesler et al. 1990, Balzer et al.
1991). Quantization is the process of constraining an input to take value from a
discrete set, given the input originally ranges over a large set of values. In the
case of deep learning, quantization has been applied to weights, activations and
gradients through rounding (Courbariaux et al. 2015, Wu et al. 2018b), vector

98 A Survey on Over-Parameterization in Deep Learning

quantization (Gong et al. 2014, Chen et al. 2015) or optimization with discrete-set
constraints (Rastegari et al. 2016, Carreira-Perpinán and Idelbayev 2017), which
is aimed at achieving the same level of accuracy as that of their full-precision
counterparts.

In particular, the quantization can be applied either in the postprocessing
phase to coarsen the pretrained weights or in an end-to-end manner to directly
obtain discrete weights and/or activations. The former is easier to implement.
For example, Gong et al. (2014) implemented vector quantization for the fully
connected layers, which was able to reduce the memory up to 24 times while
keeping the drop of the top-5 accuracy within 1%. Han et al. (2015a) used a
similar vector quantization to achieve the state-of-the-art model compression in
accordance with magnitude-based weight pruning and entropy encoding in an
iterative manner.

The end-to-end training of quantized neural networks with gradient based
methods is more challenging due to the presence of discrete weights. It turns
out that passing through a quantization layer is somehow equivalent to sampling
from a discrete distribution. The latter has been widely studied in deep neural
networks (Hinton et al. 2012, Kingma et al. 2015). As an example, BinaryConnect
(Courbariaux et al. 2015) uses quantization in the forward pass and treats it as
an identity function in the backward pass. This idea is also known as the straight
through gradient estimator (Bengio et al. 2013). Although it is a biased estimator,
it has been shown to be an useful trick in practice. The same idea can also be
applied to activations leading to fully quantized neural networks (Courbariaux
et al. 2016, Hubara et al. 2017).

Apart from being memory efficient, the quantization also enables energy efficient
computations. For example, the dot product between two binary vectors amounts
to counting the number of 1’s in the logical conjunction of these two vectors. The
bitwise operations can be carried out using arithmetic logic, which are much less
costly than floating point operations.

4.5 Towards Understanding Generalization via
Compression

In previous sections, we have seen that deep neural networks are typically designed
to be over-parameterized, which renders potential limitations in applications due
to memory and/or energy constraints. What is more critical is that a model with
thousands of parameters are considered to have high complexity. This is a bad
news in light of the classical learning theory, since the classical generalization
bounds are based on measures of model complexity. However, deep learning has
impressive generalization performance for a wide range of problems. This indicates
that there must be some form of inductive bias or implicit regularization along
with the network architectures or with the stochastic optimizers, which facilitates
the learning converging to good solutions with high probability.

We have also reviewed model compression methods for deep learning, many

4.5 Towards Understanding Generalization via Compression 99

of which are able to reduce a large number of parameters without sacrificing the
generalization. This means that the compression does not ruin the recipe of deep
learning. Han et al. (2015a) show that the compressed model can sometimes be
even better than the original model. Therefore, we may interpret the compression
as a particular regularization if we incorporate it during the training.

It turns out that the connection between compression and generalization has
already been exploited in different contexts. From a data communication point
of view, the idea of understanding generalization through compression has been
employed by Hinton and Van Camp (1993) via the minimum description length
(MDL) theory (Rissanen 1978). From an optimization point of view, the flat
minima conjecture (Hochreiter and Schmidhuber 1997b) associates the model
compressibility with the geometry of the optimization landscape. More recently,
compression scheme has been embedded into the probably approximately correct
(PAC) learning framework to achieve PAC bounds (Arora et al. 2018) and PAC-
Bayes bounds (Dziugaite and Roy 2017, Zhou et al. 2018, Pérez et al. 2018). Based
on information theory, Tishby and Zaslavsky (2015) established the information-
theoretical foundation for representation learning, where they interpret SGD as an
implicit regularizer. Although being agnostic to the learning problem, it guides
the learning biases towards achieving compressed representations.

4.5.1 The generalization puzzle
Due to the success of deep learning, many researchers attempt to answer the
following question: why does deep learning generalizes so well even without explicit
regularizations? The classical intuitive explanation (especially for CNNs) is that
deep learning builds up a hierarchical feature representation in analogy to the
primary visual cortex of the mammalian brain; the generalization comes from this
bio-inspired “inductive bias”, which leads to a special hypothesis space.

A recent empirical result shown by Zhang et al. (2016) challenges this expla-
nation, for which completely different opinions2 have been expressed. Some of
the reviewers found these results not surprising at all, but others viewed them as
thought-provoking.

To test the capacity of common DNNs, Zhang et al. (2016) conduct random-
ization tests on CIFAR-10 (Krizhevsky 2009a) and ImageNet (Deng et al. 2009)
with three network architectures: Inception V3 (Szegedy et al. 2016), AlexNet
(Krizhevsky et al. 2012b) and a 2-layer MLP with 512 hidden units, which means
either the labels or the images are corrupted via the following ways:

• Random labels: all the labels are replaced with random ones.

• Shuffled pixels: a random permutation of the pixels is chosen and then the
same permutation is applied to all the images in both the training and testing
set.

2https://openreview.net/forum?id=Sy8gdB9xx

https://openreview.net/forum?id=Sy8gdB9xx

100 A Survey on Over-Parameterization in Deep Learning

(a) (b) (c)

Figure 3: (a) Fitting random labels and random pixels on CIFAR10. Training losses of various
experiments decrease to near zero. Source: Figure 1 in Zhang et al. (2016). (b) Experiments
with ResNet18 architectures of different sizes on CIFAR-10. Even when after network is large
enough to completely fit the training data(reference line), the test error continues to decrease
for larger networks. Source: Figure 1 in Neyshabur et al. (2018). (c) The data (5 points) is
generated from y = x3 − 2x2 + 1 +N (0, 0.1). MLP do not overfit even with 12 layers which is
a network containing 18000 parameters. As a comparison, the dashed line shows an overfitted
solution. Source: Figure 1 in Wu et al. (2017).

• Random pixels: a different random permutation is applied to each image
independently.

• Gaussian: A Gaussian distribution (with matching mean and variance to
the original image dataset) is used to generate random pixels for each image.

The result on CIFAR-10 is shown in Figure 3(a). In the case where all labels are
random, the inputs and the labels are independent. However, DNNs are still able
to achieve almost zero training errors, although the convergence time is much
slower. Of course, DNNs overfit the train-set but this is considered unusual since
DNNs rarely overfit real datasets. An immediate implication from this experiment
is that DNNs have high capacity. That is, the hypothesis space of DNNs admits
high complex solutions.

In practice, DNNs generalize well on real datasets. For example, Neyshabur
et al. (2018) show that (in Figure 3(b)), on CIFAR10 with ResNet18, training with
increasing number of parameters leads to a decrease in the testing error. In this
case, both the training and testing errors converge to fix values, which suggests that
being over-parameterized does not affect the generalization capability. This is not
a standalone experiment, but an observation practically verified by a large number
of network architectures (Novak et al. 2018). Similarly, Wu et al. (2017) argue
that the reason why DNNs do not overfit in general is because learning tends to
converge to a low complexity solution. They empirically verify that (in Figure 3(c))
over-parameterized MLPs do not overfit on a three-order polynomial regression
with only 5 data points. Although there are many different complex solutions,
learned DNNs favor simple solutions that agree with the train-set regardless of the
number of layers.

To summarize, we leanrned several conclusions from these experiments:

• DNNs have high capacity to fit almost any dataset.

4.5 Towards Understanding Generalization via Compression 101

• DNNs do not overfit on real datasets as the number of parameters increasing,
which is possibly due to implicit regularization or simply because adding
more parameters does not necessarily increase the model complexity.

• DNNs tend to converge to simple solutions.

In order to understand the implications from these conclusions, we may turn
to the classical framework in the learning theory– probably approximately correct
(PAC) learning.

Denote by R(f) := Ex,y[`(f(x), y)] the risk of f ∈ H wrt a loss function `(·, ·),
and R̂(f) := 1

n

∑n
i=1 `(f(xi), yi) is the empirical risk, where H is the hypothesis

space. The PAC learning framework states that, with high probability, the
generalization error bound for any f ∈ H takes the form of

R(f)− R̂(f) ≤ O
(complexity(H)√

n

)
, (4.1)

where complexity(H) is a complexity measure of the hypothesis space H, such as
the VC dimension (Blumer et al. 1989) or the Rademacher complexity (Koltchinskii
2001). Harvey et al. (2017) give a near-tight estimate of the VC dimension for
DNNs with ReLU activations:

VC-dimension(H) = O
(
LE log(E)

)
(4.2)

with L the number of layers and E the number of edges/links in the network.
Combining the conclusions we learned from the last section, one may notice that
the classical PAC bounds can hardly explain the generalization of deep learning.
Several possible reasons are listed as below.

• The VC-dimension is dependent of the number of parameters. However, this
leads to a loose generalization bound, cannot explain the actual behaviors.
Moreover, when the VC-dimension is much larger than the number of data
points in the train-set, we can no longer identify a hypothesis with good
generalization, since the hypothesis space can shatter a set that is larger
than the train-set. In other words, there always exists two hypotheses predict
exactly the same in the train-set, but they disagree on the test-set.

• The PAC learnability holds for the entire hypothesis space and for any
distribution of the data. Thus, the universal statement also holds for the
hypothesis with the highest complexity. In practice, the obtained solutions
are in fact much simpler making the theoretical results less informative.

Given this situation, there are many attempts recently towards solving this
puzzle. Among these attempts, the flat minima conjecture (Hochreiter and Schmid-
huber 1997b, Keskar et al. 2016, Wu et al. 2017) is one of the well established
conjectures based on the insights of the special geometry of the loss landscape.
From a stochastic perspective, the PAC-Bayes explanations (Dziugaite and Roy
2017, Zhou et al. 2018, Pérez et al. 2018) and the information theoretical explana-
tions (Hinton and Van Camp 1993, Tishby and Zaslavsky 2015, Achille and Soatto

102 A Survey on Over-Parameterization in Deep Learning

2017) also shed light on the generalization puzzle. In fact, all of these conjectures
and explanations are either directly linked to model compression or derived from
the compressibility.

4.5.2 Sharpness: the bridge between compressibility and
generalization

Keskar et al. (2016) observes that there is a degradation in the performance when
using SGD with large batch size. They empirically find that large-batch SGD
tends to converge to sharp minima, which are minima in which Hessians have
large spectral norms. The sharpness is a widely used geometrical property in
optimization. For example, it is used by Łojasiewicz (1993), Kurdyka (1998)
to define the Kurdyka-Łojasiewicz condition. In deep learning, Hochreiter and
Schmidhuber (1997b) has associated sharpness with generalization in terms of the
minimum description length (MDL) principle (see Section 4.5.3): sharp minima
correspond to weights which have to be specified with high precisions, while flat
minima on the other hand only need to be determined with low precisions. In the
terminlogy of MDL, the weights with low precision need fewer bits to describe
(i.e. are of low complexity), thus, they have better generalization. Intuitively,
low-precision weights are more robust to noise and dataset/domain shifts. As an
example (Figure 4), if there is a small shift between the training function and the
testing function, who generate the training data and the testing data respectively,
a sharp minimum on the training function may be a point with high value on the
testing function. This is exactly a case of overfitting.

Figure 4: An intuitive example shows that flat minima generalizes better. Source: Figure 1 in
Keskar et al. (2016).

The sharpness has more implications. Wu et al. (2017) show that flat minima
imply smoother classifiers. Here, smoothness is in terms of the sensitivity to input
changes. Thus, it also entails low complexity.

Theorem 4.5.1 (Wu et al. (2017), Corollary 1). For 2-layer neural networks of

4.5 Towards Understanding Generalization via Compression 103

the form

f(x) :=
K∑
k=1

akσ(w>k x+ bk) s.t. ‖w‖F ≤ W (4.3)

with W a positive constant and σ(·) the ReLU activation function, denote by R̂(f)
the empirical risk wrt f(x), then

2E‖∇xf(x)‖2 ≤ ‖∇2
cR̂(f)‖2

F +W, (4.4)

for f(x) trained on a large enough dataset.

This theorem shows that if we train a 2-layer ReLU DNN to convergence, and
the minimum is flat (i.e. ‖∇2

cR̂(f)‖2
F is small), then the returned DNN has low

complexity. A similar implication has been demonstrated by Achille and Soatto
(2017), where they show that the mutual information between a flat minimum and
the true labels is low. On the contrary, the loss landscape of the learning with the
random labels does not contain flat minima, since the mutual information between
any solution and the random labels is predictably high.

The sharpness based on the magnitude of the eigenvalues of the Hessian is too
expensive for large DNNs. Keskar et al. (2016) propose an alternative definition
based on the sensitivity wrt weights. The definition is simplified by Dinh et al.
(2017):

maxw′∈B(w,ε) R̂(fw′)− R̂(fw)
1 + R̂(fw)

' max
w′∈B(w,ε)

R̂(fw′)− R̂(fw), (4.5)

where B(w, ε) is an Euclidean ball centered at the minimum w with radius ε. The
similar equal holds since R̂(fw) is near zero at the minimum w.

However, both definitions of sharpness are sensitive to reparameterizations, as
pointed out by Dinh et al. (2017). One can reparameterize the neural networks
without changing the inputs and outputs while making the sharp minima to flat
minima. Thus, sharpness alone cannot be a local measure to predict generalization.

Denote by R(f) the risk with respect to the scoring function f . Specifying
q(w) = N (µ, σ2I), with probability 1 − δ over the training set, the PAC-Bayes
generalization bound in Theorem 4.5.2 can be rewriten as

Eq(w)[R(fw)] ≤ Eq(w)[R̂(fw)] +O
(√

DKL(q‖π)
n

)
, (4.6)

≤ R̂(fµ) + max
w∈B(µ,σ)

[R̂(fw)]− R̂(fµ)︸ ︷︷ ︸
sharpness

+O
(√

DKL(q‖π)
n

)
. (4.7)

This result was first observed by Neyshabur et al. (2017). They also verified
empirically that the generalization depends on both the sharpness and the KL
divergence between the posterior q(w) and the prior π(w).

104 A Survey on Over-Parameterization in Deep Learning

4.5.3 MDL: a lossless-compression-induced supervised
learning framework

The minimum description length (MDL) principle (Rissanen 1978) is a model
selection framework. It is based on the insights that the goal of statistical inference
may be cast as trying to find regularity in the data, and the regularity may be
identified as the ability to compress (Grunwald 2004). MDL is related to the
Occam’s razor. The latter only suggests that among all the hypotheses that are
compatible with the evidence, the best hypothesis is the simplest one. MDL
embodies Occam’s razor by viewing machine learning as lossless data compression,
where the objective is a trade-off between the data fitting (i.e. the compatibility
with the evidence) and the model complexity. This is also known as the two-part
codes in the literature.

Hinton and Van Camp (1993) utilizes the MDL as a bridge to explicitly link the
regularizations of DNN training with the lossless data compression. They consider a
communication game associated with the supervised learning framework. Suppose
that a sender observes both the inputs x := {xi}ni=1 and the corresponding labels
y := {yi}ni=1, while a receiver only observes the inputs. Denote by D := (x,y). A
further required assumption is that the data are iid sampled. In order to send
y, rather than sending the raw data, they communicate in terms of a decoder
(i.e. the model), which is known a priori by both sides with the form of p(y|x,w),
where w is the message (i.e. the parameter). Note that x, y, w are assumed to be
integer-valued for the sake of simplicity in the communication game. The steps of
the game are shown as follows.

1. The sender encodesD to a message ŵ and compress ŵ losslessly to a bitstream
using entropy coding (e.g. Huffman coding) according to a prior distribution
p(w), which is agreed a priori by both sides.

2. The sender transmits the bitstream of ŵ to the receiver. The code length is
− log p(ŵ).

3. The receiver decodes the bitstream and recovers ŵ given access to p(w). The
receiver now obtain the model p(y|x, ŵ).

4. The sender transmits every yi via a lossless compression using entropy coding
according to p(yi|xi, ŵ). Each has a code length − log p(yi|xi, ŵ).

5. The receiver reconstructs yi with the decoder p(yi|xi, ŵ).

The only issue now is what is a good criterion for encoding y in the first step?
From a data transmission viewpoint, a good criterion should be linked with the
communication cost. That is, the code length should be as short as possible. This
idea leads to an optimization of the form

min
w
−

n∑
i=1

log p(yi|xi, w)− log p(w), (4.8)

4.5 Towards Understanding Generalization via Compression 105

which computes the optimal code length for the communication game. By defining
p(w), for example, as N (0, λ2I), we obtain exactly the `2 regularized maximum log-
likelihood estimation with the regularization coefficient λ > 0, which encourages
w to take values in the `2 ball. The argmin according to eq.(4.8), namely ŵ, is
also known as the maximum a posterior estimate in statistics. Thus, we may call
the above communication game MAP coding.

Alternatively, instead of picking the MAP code ŵ, we may sample w from an
auxilary distribution q(w|D), which is constructed by the sender given D. Let w̃
denote the sample drawn from q(w|D), which carries auxilary information to be
transmitted between the sender and the receiver. According to the MAP coding,
the code length would be

−
n∑
i=1

log p(yi|xi, w̃)− log p(w̃). (4.9)

Having sent y, the receiver now has all the ingredients to recover q(w|D) by the
same algorithm used by the sender. Then, the receiver can decode the auxilary
message according to q(w|D). If the transmission of the auxilary message was
conducted separately, the extra cost − log q(w̃|D) has to be paid. However, since
the main message and the auxilary message are sent via a single communication,
we have saved − log q(w̃|D) bits back. In other words, the actual communication
cost in total is

−
n∑
i=1

log p(yi|xi, w̃)− log p(w̃) + log q(w̃|D). (4.10)

Now, taking into account the sampling, the only way to optimize the total commu-
nication cost in average is to manipulate the auxilary distribution q(w|D), such
that the expected eq.(4.10) is minimized. In other words, we choose q(w|D) to be

argminq
[
−

n∑
i=1

Eq(w)[log p(yi|xi, w)] +DKL(q(w)‖p(w))
]
. (4.11)

This version of the communication game is referred to as bits-back coding, which
was originally proposed by Hinton and Van Camp (1993). Comparing to the
MAP coding, the bits-back coding in average saves H

(
q(w|D)

)
bits. Note that

the “bits-back” argument is just a way to motivate that sending a distribution of
the weights is much more efficient than sending a point estimate in terms of the
communication cost. The auxilary task does not necessarily exist as a real task.
The auxilary distribution q(w|D) in fact have different names in different contexts.
In Bayesian inference, it is called the variational posterior, while in PAC-Bayesian
theory, it is called the Gibbs predictor.

Intuitively, the analogy between lossless data transmission and supervised
learning is based on the insight that the data encoder and the supervised learner
are both mechanisms to abstract information. If the data transmission favors
simple and precise encoding, so does the supervised learning. Thus, MDL is a good
principle to align compression with generalization guiding the learning towards

106 A Survey on Over-Parameterization in Deep Learning

low complexity solutions. As can be seen from (4.11), very noisy weights can be
communicated very cheaply, but they also cause extra variance in the data fitting
term, making it more expensive to communicate.

The objective function in eq.(4.11) is variously known as the free energy in
thermodynamics or the negative evidence lower bound (ELBO) in variational
inference. In the context of approximate Bayesian inference (Graves 2011, Blundell
et al. 2015), it can be derived from

θ∗ = arg min
θ

DKL
(
q(w|θ)‖p(w|D)

)
(4.12)

= arg min
θ

∫
dwq(w|θ) log q(w|θ)

p(w)p(D|w) (4.13)

= arg min
θ
−Eq(w|θ)[log p(D|w)] +DKL(q(w|θ)‖p(w)) (4.14)

In practice, the data fitting term is intractable due to the expectation over w,
which is a high-dimensional vector. So, as a solution, Monte Carlo integration
can be applied, but the optimization will suffer from high-variance gradients.
Alternatively, if q(w|θ) is parameterized as a distribution in the location-scale
family, the reparameterization trick (Kingma and Welling 2013) can be used. It
employs a change of variables: w = f(φ, ε), where φ is the variational parameter;
ε ∼ N (0, I) is a noise variable. Then, the first term in eq.(4.14) can be rewriten
as −Ep(ε)[log p(D|f(φ, ε))]. The same reparameterization trick can be applied to
the KL term in eq.(4.14). But that is not necessary, as KL divergence sometimes
has closed form (e.g. for Gaussians). By applying this trick, we obtain unbi-
ased stochastic gradients wrt the variational parameter φ, transforming it to an
optimization problem that is solvable by stochastic gradient descent (SGD).

Variational Bayes with sparsity inducing prior explicitly align model compres-
sion with generalization. By imposing sparsity inducing priors, such the mixture
of Gaussians (Ullrich et al. 2017a) and continuous relaxations of the spike-and-slab
distribution (Louizos et al. 2017), the learned weights are easier to be pruned or
quantized afterwards, since they are explicitly guided towards sparse or clustered
structures while targeting on good performance on the training data. In practice,
even with a standard Gaussian prior, variational Bayes provides a natural way
to prune weights by examining the signal-to-noise-ratio (SNR) |µ|

σ
(Graves 2011,

Blundell et al. 2015).
So far we have reasoned the relationship between compression and generalization

through the MDL intuition with the noisy weights. There is in fact a more
straightforward justification from the PAC-Bayesian learning theory. Moreover,
one can easily identify the connection between MDL and PAC-Bayesian bounds.

Let us first introduce some notations. The risk associated with a scoring
function fw(x, y) and a posterior q(w) is given by

R(q, f) = Ew∼q(w)E(x,y)∼p∗(x,y)[fw(x, y)], (4.15)

where p∗ is the underlying data distribution, which is unknown and independent
of any model. Let (x,y) ∈ (X × Y)n be an iid sample of size n drawn from the

4.5 Towards Understanding Generalization via Compression 107

data distribution. The empirical risk is defined by

R̂(q, f) = Ew∼q(w)
1
n

n∑
i=1

[fw(yi, xi)]. (4.16)

The PAC Bayesian theory (McAllester 2003) provides a probably approximately
correct bound on the generalization error, which is a data-driven bound that are
computed on the sample (x,y), and holds uniformly over all encoder q(w) which
is a valid posterior distribution.
Theorem 4.5.2 (McAllester (2003)). For a sample (x,y) of size n drawn iid from
the data distribution, with probability at least 1− δ over the choice of (x,y), we
have, for all valid posterior q(w), scoring function fw(x, y) and prior π(w),

R(q, f) ≤ R̂(q, f) +
√
DKL(q‖π)− log δ + log n+ 2

2n− 1 . (4.17)

The quality of the generalization bound depends on the number of data points
and the KL divergence between q(w) and π(w). Moreover, it is easy to see that the
right hand side of eq.(4.17) resembles the objective function of variational Bayes,
if we consider a specical case of the scoring function:

fw(x, y) = − log p(y|x,w)− log
∑
y′
e−fw(x,y′). (4.18)

In fact, Germain et al. (2016) has identified that minimizing the PAC-Bayesian
bound is equivalent to maximizing the Bayesian marginal likelihood.

In order to directly relate generalization error with model compression, one
could define a prior reflecting the model size. For example, Zhou et al. (2018)
considered a prior

π(w) = 1
Z
u(|w|)2−|w| with Z =

∑
w

u(|w|)2−|w| (4.19)

based on the model size |w|, where u(·) is the uniform distribution, and a posterior
q(w) being the delta distribution with a point mass at w. The KL divergence is
then upper bounded by

DKL(q‖π) ≤ |w| log 2− log(u(|w|)) (4.20)
due to the fact that Z ≤ 1. By plugging eq.(4.20) into Theorem 4.5.2, we see
clearly that the generalization bound depends on the model size.

4.5.4 Information bottleneck: a lossy-compression-
induced supervised learning framework

MDL is an analogy between lossless data compression and supervised learning.
However, since the data usually contains noise, it is more appropriate to use a
lossy data compression scheme. Tishby and Zaslavsky (2015) take a first attempt
on interpreting the DNN training with SGD optimizer in terms of a lossy data
compression scheme– the information bottleneck methods. It becomes one of the
hottest topics in theoretical deep learning, although it also brought a controversial
discussion (Saxe et al. 2018).

108 A Survey on Over-Parameterization in Deep Learning

Information bottleneck

The information bottleneck method (Tishby et al. 2000) extends the rate-distortion
framework for supervised learning or other problems involving finding the best
tradeoff between preserving the relevance wrt a random variable Y and removing
the irrelevance wrt another random variable X. This is done by searching a
“bottleneck”, such that the information thatX contains about Y is squeezed through
the bottleneck. The key underlying assumption is that Y must not be independent
of X, namely, I(X;Y) > 0. In the case of supervised learning, it is common that Y
is a deterministic function of X. Thus, I(X;Y) = H(Y)−H(Y |X) = H(Y) > 0.
Specifically, the goal is to create a summary of X, the bottleneck, denoted by X̂,
such that it forms a graphical model X̂ ← X ← Y , and the distortion is defined
in terms of X̂ and Y . The proposed objective leads to an abstract optimization
problem

min I(X̂;X)− βI(X̂;Y), (4.21)

which is a generalization of the standard rate-distortion tradeoff. I(X̂;Y) can
be seen as a “correct” measure of the distortion for this setting. To see this, we
rewrite

−I(X̂;Y) = −Ep(x,x̂,y)

[
log p(y|x̂)

p(y)

]
(4.22)

= Ep(x,x̂)

[
−
∑
y

p(y|x) log p(y|x̂)
p(y) +

∑
y

p(y|x) log p(y|x)
p(y|x)

]
(4.23)

= Ep(x,x̂)

[∑
y

p(y|x) log p(y|x)
p(y|x̂) −

∑
y

p(y|x) log p(y|x)
p(y)

]
(4.24)

= Ep(x,x̂)

[
DKL

(
p(y|x)‖p(y|x̂)

)
−DKL

(
p(y|x)‖p(y)

)]
, (4.25)

where the joint distribution p(x, x̂, y) = p(x, x̂)p(y|x). Since we do not have the
control over the interaction between X and Y , DKL

(
p(y|x)‖p(y)

)
is a constant in

the optimization. By applying Lemma 5.1.1, we specify the information bottleneck
optimization as

min
p(x̂|x)∈Px̂

min
m(x̂)∈M

min
p(y|x̂)∈Py

I(p(x̂|x),m(x̂)) + βEp(x̂|x)m(x̂)DKL
(
p(y|x)‖p(y|x̂)

)
.

(4.26)

Comparing to (1.51), we see that

D(p(x̂|x),m(x̂), p(y|x̂)) = Ep(x̂|x)m(x̂)DKL
(
p(y|x)‖p(y|x̂)

)
(4.27)

with an extended parameter p(y|x̂) ∈ Py, where Py is the set of valid p(y|x̂).
To solve (4.26), assuming that we are access to p(x) and p(y|x), a Blahut-

Arimoto-like algorithm is proposed by Tishby et al. (2000).

4.5 Towards Understanding Generalization via Compression 109

Proposition 4.5.3 (Tishby et al. (2000), Theorem 5). The minimization in (4.26)
is performed by the convergent alternating iterations. Denoting by t the iteration
step, we have

pt+1(x̂|x) =
mt(x̂) exp

(
− βD(pt(x̂|x),mt(x̂), pt(y|x̂))

)
∑
x̂′mt(x̂′) exp

(
− βD(pt(x̂′|x),mt(x̂′), pt(y|x̂′))

) (4.28)

mt+1(x̂) =
∑
x

p(x)pt+1(x̂|x) (4.29)

pt+1(y|x̂) =
∑
x

p(y|x)p(x)pt+1(x̂|x)
mt+1(x̂) (4.30)

Note that the above alternating minimization algorithm is not in general a
realistic algorithm, since we do not access to either p(x) or p(y|x) in most problems,
such as the real supervised learning problems. However, the rate distortion theory
and information bottleneck still provide an interesting new way to understand the
generalization in machine learning.

Information bottleneck insights on generalization of DNNs

Figure 5: The trajectories of the points (I(T ;X), I(T ;Y)) at different epochs from different
layers. The neural network is a CNN with ReLU activations and 5 hidden layers, which is trained
on the CIFAR-10 dataset with SGD for 104 epochs. Each trajectory is associated with a hidden
layer, and is represented by a sequence of points calculated at each epoch. The color is chosen to
be directly linked to epoch. There is a clear transition between two phases, which can be seen for
all trajectories. Due to the data processing inequality, lower layers always have higher mutual
information. Source: the figure is taken from the comment of Naftali Tishby in the discussion at
https://openreview.net/forum?id=ry_WPG-A-.

Tishby and Zaslavsky (2015) propose a hypothesis to explain the phenomenon
that overfitting is not observed in highly over-parameterized neural networks: the
training of deep neural networks is implicitly regularized by SGD, which biases

https://openreview.net/forum?id=ry_WPG-A-

110 A Survey on Over-Parameterization in Deep Learning

the learned representation of the data towards minimal sufficient statistics. This
phenomenon is verified in a small-scale experiment, where they observe that there
exists a two-phase transition during the learning. Denote by X, Y, T the input,
the output and the representation respectively. In the first phase, the SGD has a
fast convergence rate which is related to gain a sufficiency of the representation,
namely, achieving high I(T ;Y). Later, the SGD enters an asymptotic phase
which is related to the compression of the representation, namely, achieving small
I(T ;X). An example of the evolving dynamics for all layers is shown in Figure 5.
Thus, the conjecture is that SGD implicitly optimizes an objective which works
similarly as that of the information bottleneck. Recent works on interpreting SGD
as variational inference by Chaudhari and Soatto (2018), Mandt et al. (2017) share
some interesting thoughts related to this conjecture.

Other than focusing on the noise introduced by SGD, Achille and Soatto (2018),
Dai et al. (2018) relate information bottleneck with dropout (Hinton et al. 2012)
through the local reparameterization trick (Kingma et al. 2015). Specifically,
denote by Zi the activation of the ith layer, the information bottleneck principle
reads as

min
L∑
i=1

βiI(Zi;Zi−1)− I(Zi;Y), (4.31)

where βi >= 0 is the coefficient to balance the minimality and sufficiency. Due
to the intractable mutual information, a variational lower bound of the mutual
information is used, leading to the following surrogate minimization:

min L
(
{p(zi|zi−1)}Li=1, {q(zi)}Li=1, q(y|zL)

)
(4.32)

L :=
L∑
i=1

βiEzi−1∼p(zi−1)[DKL(p(zi|zi−1)‖q(zi))]− E(x,y)∼p∗(x,y)EzL∼p(zL|x)[log q(y|zL)],

where {q(zi)}i, q(y|zL) are variational distributions; p(zi|zi−1) comes from the
decomposition of the joint distribution p(zi, zi−1) = p(zi|zi−1)p(zi−1). As a specical
case, z0 = x. So, p(zL|x) = ∑

z\zL
∏
i p(zi|zi−1). It can be shown that if we specify

p(zi|zi−1) as a conditional Gaussian via

zi = (zi−1 � εi) · wi with εi ∼ N (0, I), (4.33)

which is known as the Gaussian dropout, we obtain an equivalent way to inject
Gaussian noise to the weights.

It is interesting to point out that, by maximizing the lower bound of the
information bottleneck, i.e., (4.32), also known as the variational information
bottleneck (Alemi et al. 2016), we are in fact doing exactly the same thing that
MDL and variational Bayes are asking to. The equivalence is shown by the local
reparameterization trick, that is, instead of introducing noise to the weights, it is
more efficient to propagate noise to activations directly. This will also reduces the
variance of the stochastic gradients (Kingma et al. 2015).

4.6 Transferring Knowledge from Over-Parameterized Models 111

4.6 Transferring Knowledge from Over-
Parameterized Models

We have seen that, empirically, the combination of SGD and over-parameterized
DNNs is so far the fastest and most reliable way to achieve good performance in
various machine learning tasks. On the other hand, we have seen in Section 4.4 that
model compression methods, such as pruning and quantization, are applied either
in an end-to-end fashion or by a post-processing scheme, which do not degrade the
original models. However, model compression methods are unavoidably limited
by the initial network architectures, which are not designed for energy efficient
scenarios. As a result, compressed networks often cannot be tailored to fit mobile
and embedded devices. Moreover, compression does not necessarily reduce the
running time memory even the networks can be stored more efficiently. Another
big issue is that over-parameterized models are often trained with huge data. Many
tasks in real life are not able to be solved in that way, since gathering sufficiently
large data is not always possible. Now, a natural question is can we make use of
the nice properties of the over-parameterization in deep learning if we only have
limited data?

Transfer learning (Pratt 1993, Caruana 1995) is targeted on this problem
focusing on recognizing and applying relevant knowledge learned from previous
tasks to new tasks. There are many methods can be used for transfer learning.
The common approach is called finetuning, which amounts to training a source
network on the source task and then copy the weights of the source network to
initialize the target network. It is noticed that the top layers are more specific
to the task itself while the lower layers are more generic (Yosinski et al. 2014).
So, we usually froze low layers while finetuning, meaning that they do not change
during the learning on the target task. A slightly more sophisticated idea is to
regularize the distance between the weights of the source network and the weights
of the target network. This idea has been successfully used by passive-aggressive
algorithm for online learning (Crammer et al. 2006), adaptive SVM for computer
vision (Yang et al. 2007, Aytar and Zisserman 2011), and more recently, elastic
weight consolidation for overcoming catastrophic forgetting in continual learning
(Kirkpatrick et al. 2017).

It turns out that both model tailoring and transfer learning can be cast as a
knowledge transfer problem. In the former case, we transfer knowledge between
two DNNs using the same dataset. In a slightly different scenario, namely, transfer
learning, we perform the same transfer but acrossing two similar datasets.

The teacher-student framework emerged as a solution to the knowledge transfer
problems, which was firstly proposed by Ba and Caruana (2014) as a model
compression method. Within the same dataset, the framework is also known as
knowledge distillation due to Hinton et al. (2015). Ba and Caruana (2014) focus
on the regularization aspect of knowledge distillation. They argue that a shallow
neural network can be as good as a deep neural network with the same number of
parameters. Although shallow neural networks are more difficult to train, with
the distillation loss as a regularization, they perform equally well. Hinton et al.

112 A Survey on Over-Parameterization in Deep Learning

Figure 6: FitNet by Romero et al. (2014).
Figure 7: Attention transfer by Zagoruyko
and Komodakis (2016b).

(2015) pay more attention on distilling knowledge from an ensemble of models (e.g.
by dropout) into a single model as well as improving the training of an ensemble
of specialist neural networks.

Concretely, we aim to train a student network (usually smaller) to mimic
a pretrained teacher network (usually over-parameterized and trained with a
sufficiently large dataset). The framework was originally implemented by matching
the predictions of the two networks. For a classification problem, this means
matching the final outputs (i.e. logits) of the two networks either via `2 distance
on the log scale (Ba and Caruana 2014) or by the cross entropy loss (Hinton et al.
2015). Recently, several different implementations of the teacher-student framework
have been proposed for convolutional neural networks. Moreover, rather than
matching only the logits or the softmax layers, it has been shown that knowledge
distillation can be applied to intermediate layers (Romero et al. 2014). Since
the activation dimensions are mismatched between the teacher and the student,
Zagoruyko and Komodakis (2016b) propose to extract statistics and then match
those statistics. For example, matching the averages of activation maps can be
interpreted as matching attention maps. Similarly, Romero et al. (2014) solve
the mismatch issue by performing a linear regression on the student activation to
match the teacher activation. An illustrative comparison between Romero et al.
(2014) and Zagoruyko and Komodakis (2016b) is shown in Figure 6 and 7.

4.7 Conclusion
In this chapter, we have reviewed the over-parameterization design and its impli-
cations in deep learning. In particular, we have shown that over-parameterized
DNNs can be compressed without significant performance drop, and have dis-
cussed the relationship between model generalization and compression. Finally,
we have mentioned the teacher-student framework as a general framework to distil
knowledge from over-parameterized DNNs.

113

Chapter

5 β-BNN: A Rate-Distortion Perspective
on Bayesian Neural Networks

Abstract
We propose an alternative training framework for Bayesian neural networks

(BNNs), which is motivated by viewing the Bayesian model for supervised learning
as an autoencoder for data transmission. Then, a natural objective can be invoked
from the rate-distortion theory. Specifically, we end up minimizing the mutual
information between the weights and the dataset with a constraint that the nega-
tive log-likelihood is smaller than a certain value. The classical Blahut-Arimoto
algorithm for solving this kind of optimization is infeasible due to the intractable
expectations over the weights and the dataset, so we develop a new approximation
to the steps of the Blahut-Arimoto algorithm. Our method exhibits some attractive
properties over the conventional KL-regularized training of BNNs with fixed Gaus-
sian prior: firstly, improved stability during optimization; secondly, a more flexible
prior which can be understood from an empirical Bayes viewpoint.

114 β-BNN: A Rate-Distortion Perspective on BNNs

Figure 1: The graphical model of Bayesian supervised learning. Given a dataset, the supervised
learning can be viewed as an autoencoding of the labels, where w is the shared latent variable.

5.1 Supervised learning via lossy compression
Given a sample S := X × Y with inputs X := {(xi)}ni=1 and labels Y := {(yi)}ni=1,
consider a sender who would like to send Y to a receiver. Instead of transmitting
the raw labels, the sender may compress the data with an encoder q(w|S) and
send the encoder as well as the inputs. The receiver can then reconstruct the
labels by combining the encoder and a predefined decoder p(y | x,w):

ŷi ∼ q(y | xi, S) :=
∫
p(y | xi, w)q(w|S)dw, (5.1)

where ŷi the reconstructed label for input xi. Note that q(y | xi, S) resembles
the predictive distribution in the Bayesian terminology, whose graphical model is
shown in Figure 1.

This data-transmission view motivates a new learning objective for Bayesian
models based on information theory. The Bayesian inference can be seen as a
special case where we use the true posterior p(w|S) as the encoder. However, the
encoder q(w|S) is not necessarily equal to the posterior p(w|S). It comes from an
empirical view of the joint distribution p(S,w):

p(S,w) = q(w|S)p∗(S) with p∗(S) =
n∏
i=1

p∗(xi, yi), (5.2)

where we denote the “true” distribution of data as p∗(x, y), which is unknown and
model independent. The data-transmission analogy of Bayesian inference offers us
a direct way to relate data compression with model generalization. To see this, we
analyze the limits of the encoder q(w|S). If we force w to memorize everything in
S including the noise, e.g. to have an identity map, we have to pay a high price for
the communication cost. However, the encoder may not be even useful for another
sample since it is too specific to a particular sample S. On the other hand, if w is
independent of S, then the receiver has no way to decode the message no matter
how powerful the decoder is.

The trade-off between the compression and the reconstruction can be formulated
as a rate-distortion trade-off (Cover and Thomas 2012). The compression rate is
measured by the mutual information I(w;S)1. The distortion function, denoted by

1Note that the rate is the minimum I(Ŝ, S) over the output Ŝ of the autoencoder. We

5.1 Supervised learning via lossy compression 115

d(w, S), measures the quality of the reconstruction, can be naturally defined as the
negative log-likelihood. This argument is in line with the Minimum Description
Length principle under lossless compression, which says that the best model among
all equally good models is the one that leads to the best compression of the
data. However, the proposed learning formulation is based on lossy compression.
Specifically, the rate-distortion trade-off is expressed as the following optimization
problem:

min
q(w|·)∈Q

[
I(w;S) ≡ I(q(w|S))

]
s.t. Ep∗(S)Eq(w|S)d(w, S) ≤ D (5.3)

I(q(w|S)) := Ep∗(S)Eq(w|S)
[

log q(w|S)
q(w)

]
, (5.4)

d(w, S) := −
n∑
i=1

log p(yi|xi, w) = − log p(S|w) + constant, (5.5)

where Q is the set of properly normalized pdfs. A similar rate-distortion analysis
for unsupervised representation learning has been conducted by Alemi et al. (2017).
Note that q(w) = ∑

S p
∗(S)q(w|S) is the aggregated posterior (Makhzani et al.

2015, Tomczak and Welling 2017). This coupling term renders optimization difficult.
We show in the following lemma how to convert eq.(5.3) to an equivalent but more
convenient problem.

Lemma 5.1.1 (10.8.1 (Cover and Thomas 2012)). The mutual information has a
variational form:

I(X;Y) = min
m(y)

DKL(p(x, y)‖p(x)m(y)), where m∗(y) = p(y) =
∫
p(x, y)dx.

By applying Lemma 5.1.1 to eq.(5.3), we rewrite the rate-distortion trade-off
as:

min
m(w)

min
q(w|·)∈Q

I(q(w|S),m(w)) s.t. Ep∗(S)Eq(w|S)d(w, S) ≤ D (5.6)

I(q(w|S),m(w)) := Ep∗(S)Eq(w|S)
[

log q(w|S)
m(w)

]
. (5.7)

Using the Lagrange dual function we convert eq. 5.6 into an unconstrained
optimization problem:

F (β) := min
m(w)

min
q(w|·)∈Q

I(q(w|S),m(w)) + β
[
Ep∗(S)Eq(w|S)d(w, S)−D

]
. (5.8)

Interestingly, we can see a connection with the maximum entropy principle
(Jaynes 1957), where m(w) term relates to the base measure of the entropy of q(w).

minimize I(w;S), since the decoder p(y|x,w) only depends on x and w, and I(Ŝ, S) ≤ I(w;S)
by data processing inequality.

116 β-BNN: A Rate-Distortion Perspective on BNNs

One may also see the connection to the empirical Bayes (Robbins 1985, Kucukelbir
and Blei 2014), since eq.(5.6) involves optimizing the “posterior” q(w|S) and the
“prior” m(w) at the same time. This perspective links information theory and
(empirical) Bayes at a model level rather than at an inference level. It is worth
mentioning that Achille and Soatto (2017) was the first arriving the objective
in eq.(5.3). However, their derivation was quite different and did not use the
aforementioned variational upper bound for the mutual information.

5.2 Approximate Blahut-Arimoto Algorithm
The direct optimization of eq.(5.8) is cumbersome, since we need to parameterize
a high dimensional mapping q(w|S). Hence, we resort to the classical Blahut-
Arimoto algorithm (Arimoto 1972, Blahut 1972) for computing F (β), which is an
alternating minimization using the following fixed point equations:

q(w|S) = m(w) exp(−β d(w, S))∫
m(v) exp(−β d(v, S))dv (5.9)

m(w) =
∑
S

p∗(S)q(w|S). (5.10)

The iterative process defined by the Blahut-Arimoto algorithm optimizes q(w|S)
and m(w) at the same time which, in theory, can lead to edge cases where m(w)
“chases” q(w|S). However, in practice, this approach has proven to be effective,
as shown in the empirical Bayes literature (Robbins 1985, Kucukelbir and Blei
2014) which is relevant due to our treatment of m(w). In section 3, we will show
these practical benefits in our scenario. As future work, we plan to address these
theoretical questions exploiting the new uncovered links between distortion-rate
theory and empirical Bayes.

We now continue with our inference method by making two approximations to
the above equations:

1. We use a variational approximation q(w|θ) for q(w|S) by solving

θ(S) = arg min
θ

DKL(q(w|θ)‖q(w|S)) (5.11)

= arg min
θ

DKL(q(w|θ)‖m(w)) + β Eq(w|θ)
[
d(w, S)

]
. (5.12)

Following Blundell et al. (2015), we parameterize q(w|θ) as a Gaussian
distribution.

2. We approximate m(w) ' ∑S p
∗(S)q(w|θ(S)) ' 1

K

∑K
k=1 q(w|θ(Bk)) =: m̃(w),

where Bk is a bootstrap sample of size nb drawn from the empirical distribu-
tion pS(x, y) = 1

n

∑n
i=1 δ(xi = x)δ(yi = y). Note that we only resample data

to create Bk if nb > n.

We call the resulting approach β-BNN. The detailed algorithm is shown in
Algorithm 3. Note that the step for updating q(w|θ) resembles the ELBO derived by

5.3 Experiments 117

Blundell et al. (2015) for vanilla BNNs, except that the coefficient β is now formally
introduced, and instead of setting m(w) to be N (0, I), m(w) is approximated by a
mixture of variational posteriors. It is clear that nb and K determine how close we
follow the classical Blahut-Arimoto steps. However, we do not want to take very
large nb and K, since both steps are approximated. Inspired by this argument, we
also consider an online version, where m̃(w) is updated whenever a new variational
posterior is produced.

Algorithm 3 Approximate Blahut-Arimoto Algorithm
1: Input: S (dataset), β (coefficient), K (# mixture components), nb (size of a

bootstrap sample).
2: Initialize: Θ = {θ(0)

k = (0, I)}Kk=1; m̃(w) = 1
K

∑
θ∈Θ q(w|θ).

3: for all t = 1, . . . , T do
4: Draw K bootstrap samples {Bk}Kk=1 of size nb from pS(x, y).
5: for all k = 1, . . . , K do
6: θ

(t)
k ← nb SGD steps on the loss of (5.12) initialized at θ(t−1)

k .
7: Θ = Θ ∪ {θ(t)

k } \ {θ
(t−1)
k }.

8: if do online update or k = K then
9: m̃(w) = 1

K

∑
θ∈Θ q(w|θ).

10: end if
11: end for
12: end for
13: Output: Θ.

5.3 Experiments
We test β-BNN, online β-BNN and vanilla BNN (Blundell et al. 2015) on the
colorful MNIST dataset (Bulten 2017), where each image is converted to RGB
space and blended with a random background. We also test a fixed-prior β-BNN,
which is a special case: m̃(w) ≡ N (0, I).

For this experiment, T = 100 is sufficient to converge; q(w|θ) and m̃(w) are
specified in Section 5.2; p(y|x,w) is implemented by a multilayer perceptron
(Linear400-ReLU-Linear400-ReLU-Linear10-Softmax); θ(t)

k is obtained by running
SGD over Bk once with batch size 128 and learning rate 10−3. The comparison is
shown in Table 1, where the prediction is arg maxy p(y|x,E[w]). We allocate 10000
points as the validation set, and choose β−1 from 10 candidates ranging uniformly
from 10−11 to 10−2. We set K = 5 for the comparison as the performance only
increases marginally for K ≥ 5.

We empirically observe that fixed-prior BNNs suffer from slow convergence
due to very large KL terms (about 106). Thus, we need to choose very small β
(about 10−9) to compensate, which will not be scalable for much larger networks.
The convergence comparison is shown in Figure 2, where we can see that online
β-BNN converges to a better local minimum and enjoys a faster convergence.

118 β-BNN: A Rate-Distortion Perspective on BNNs

Algorithm 1
β∗

Accuracy

Vanilla BNN 1
n

90.05
Fixed-prior β-BNN 10−10 95.86
β-BNN 10−5 96.08
Online β-BNN 10−3 97.12

Table 1: The comparison on colorful MNIST. We choose nb = 10000,K = 5 for β-BNN. Then,
at each iteration, it goes through the training set once. We choose nb = 128,K = 5 for online
β-BNN, and increase T to visit the same amount of data. Note that vanilla BNN corresponds to
fixed-prior β-BNN with β−1 = 1

n and K = 1.

0 20 40 60 80 100
epoch

70

75

80

85

90

95

100

te
st

 a
cc

ur
ac

y

vanilla BNN
beta-BNN
Fixed-prior beta-BNN
online beta-BNN

Figure 2: Testing accuracy over training epochs.

5.4 Discussion
The proposed algorithm is in fact quite similar to the training algorithm of vanilla
BNNs, except that we update the “prior” every few iterations. We however did not
fully take advantage of the stochasticity in eq.(5.8), which allows us to explicitly
take the generalization into account. Consider two iid samples S and T drawn
from the data distribution p∗(S). We may take the following stochastic objective

Eq(w|θ(S))

[
log q(w|θ(S))

m(w)

]
+ β/2

[
Eq(w|θ(S))d(w, S) + Eq(w|θ(S))d(w, T)

]
(5.13)

as the loss function for each iteration, that is, we use S to update q(w|·), attaining
θ(S), but take into account the performance of another sample T . We leave this
extention to our future work.

119

Chapter

6 Empirical Bayes Transductive
Meta-Learning with Synthetic Gradients

Abstract
We propose a meta-learning approach that learns from multiple tasks in a trans-
ductive setting, by leveraging the unlabeled query set in addition to the support
set to generate a more powerful model for each task. To develop our framework,
we revisit the empirical Bayes formulation for multi-task learning. The evidence
lower bound of the marginal log-likelihood of empirical Bayes decomposes as a sum
of local KL divergences between the variational posterior and the true posterior
on the query set of each task. We derive a novel amortized variational inference
that couples all the variational posteriors via a meta-model, which consists of a
synthetic gradient network and an initialization network. Each variational posterior
is derived from synthetic gradient descent to approximate the true posterior on
the query set, although where we do not have access to the true gradient. Our
results on the Mini-ImageNet and CIFAR-FS benchmarks for episodic few-shot
classification outperform previous state-of-the-art methods. Besides, we conduct
two zero-shot learning experiments to further explore the potential of the synthetic
gradient.

120 EB Transductive Meta-Learning with Synthetic Gradients

6.1 Introduction
While supervised learning of deep neural networks can achieve or even surpass
human-level performance (He et al. 2015, Devlin et al. 2018), they can hardly
extrapolate the learned knowledge beyond the domain where the supervision is
provided. The problem of solving rapidly a new task after learning several other
similar tasks is called meta-learning (Schmidhuber 1987, Bengio et al. 1991, Thrun
and Pratt 1998); typically, the data is presented in a two-level hierarchy such that
each data point at the higher level is itself a dataset associated with a task, and
the goal is to learn a meta-model that generalizes across tasks. In this paper, we
mainly focus on few-shot learning (Vinyals et al. 2016), an instance of meta-learning
problems, where a task t consists of a query set dt := {(xt,i, yt,i)}ni=1 serving as
the test-set of the task and a support set dlt:={(xlt,i,y

l
t,i)}

nl

i=1 serving as the train-set.
In meta-testing1, one is given the support set and the inputs of the query set
xt := {xt,i}ni=1, and asked to predict the labels yt := {yt,i}ni=1. In meta-training, yt
is provided as the ground truth. The setup of few-shot learning is summarized in
Table 1.

Support set Query set
dlt := {(xlt,i, ylt,i)}n

l

i=1 xt := {xt,i}ni=1 yt = {yt,i}ni=1

Meta-training X X X
Meta-testing X X 7

Table 1: The setup of few-shot learning. If task t is used for meta-testing, yt is not given to the
model.

A important distinction to make is whether a task is solved in a transductive
or inductive manner, that is, whether xt is used. The inductive setting is what was
originally proposed by Vinyals et al. (2016), in which only dlt is used to generate a
model. The transductive setting, as an alternative, has the advantage of being able
to see partial or all points in xt before making predictions. In fact, Nichol et al.
(2018) notice that most of the existing meta-learning methods involve transduction
unintentionally since they use xt implicitly via the batch normalization (Ioffe
and Szegedy 2015b). Explicit transduction is less explored in meta-learning, the
exception is Liu et al. (2018), who adapted the idea of label propagation (Zhu
et al. 2003) from graph-based semi-supervised learning methods. We take a totally
different path that meta-learn the “gradient” descent on xt without using yt.

Due to the hierarchical structure of the data, it is natural to formulate meta-
learning by a hierarchical Bayes (HB) model (Good 1980, Berger 1985), or alterna-
tively, an empirical Bayes (EB) model (Robbins 1985, Kucukelbir and Blei 2014).
The difference is that the latter restricts the learning of meta-parameters to point

1To distinguish from testing and training within a task, meta-testing and meta-training are
referred to as testing and training over tasks.

6.1 Introduction 121

estimates. In this paper, we focus on the EB model, as it largely simplifies the
training and testing without losing the strength of the HB formulation.

The idea of using HB or EB for meta-learning is not new: Amit and Meir
(2018) derive an objective similar to that of HB using PAC-Bayesian analysis;
Grant et al. (2018) show that MAML (Finn et al. 2017) can be understood as a EB
method; Ravi and Beatson (2018) consider a HB extension to MAML and compute
posteriors via amortized variational inference. However, unlike our proposal, these
methods do not make full use of the unlabeled data in query set. Roughly speaking,
they construct the variational posterior as a function of the labeled set dlt without
taking advantage of the unlabeled set xt. The situation is similar in gradient based
meta-learning methods (Finn et al. 2017, Ravi and Larochelle 2016, Li et al. 2017c,
Nichol et al. 2018, Flennerhag et al. 2019) and many other meta-learning methods
(Vinyals et al. 2016, Snell et al. 2017, Gidaris and Komodakis 2018), where the
mechanisms used to generate the task-specific parameters rely on groundtruth
labels, thus, there is no place for the unlabeled set to contribute. We argue that
this is a suboptimal choice, which may lead to overfitting when the labeled set is
small and hinder the possibility of zero-shot learning (when the labeled set is not
provided).

In this paper, we propose to use synthetic gradient (Jaderberg et al. 2017)
to enable transduction, such that the variational posterior is implemented as a
function of the labeled set dlt and the unlabeled set xt. The synthetic gradient is
produced by chaining the output of a gradient network into auto-differentiation,
which yields a surrogate of the inaccessible true gradient. The optimization process
is similar to the inner gradient descent in MAML, but it iterates on the unlabeled
xt rather than on the labeled dlt, since it does not rely on yt to compute the true
gradient. The labeled set for generating the model for an unseen task is now
optional, which is only used to compute the initialization of model weights in our
case. In summary, our main contributions are the following:

1. In section 6.2 and section 6.3, we develop a novel empirical Bayes formulation
with transduction for meta-learning. To perform amortized variational
inference, we propose a parameterization for the variational posterior based
on synthetic gradient descent, which incoporates the contextual information
from all the inputs of the query set.

2. In section 6.4, we show in theory that a transductive variational posterior
yields better generalization performance. The generalization analysis is done
through the connection between empirical Bayes formulation and a multitask
extension of the information bottleneck principle. In light of this, we name
our method synthetic information bottleneck (SIB).

3. In section 6.5, we verify our proposal empirically. Our experimental results
demonstrate that our method significantly outperforms the state-of-the-art
meta-learning methods on few-shot classification benchmarks under the
one-shot setting.

122 EB Transductive Meta-Learning with Synthetic Gradients

}

} dt

dl
t

N
n

nl

xl
t,i

yl
t,i

xt,iyt,i

wt

ϕ

ψ

f

Generative

Inference

La
be

le
d

U
nl
ab

el
ed

(a) Graphical model of
EB (b) MAML (c) Our method (SIB)

Figure 1: (a) The generative and inference processes of the empirical Bayes model are depicted
in solid and dashed arrows respectively, where the meta-parameters are denoted by dashed
circles due to the point estimates. A comparison between MAML eq.(6.6) and our method (SIB)
eq.(6.10) is shown in (b) and (c). MAML is an inductive method since, for a task t, it first
constructs the variational posterior (with parameter θK) as a function of the support set dlt,
and then test on the unlabeled xt; while SIB uses a better variational posterior as a function of
both dlt and xt: it starts from an initialization θ0

t (dlt) generated using dlt, and then yields θKt by
running K synthetic gradient steps on xt.

6.2 Meta-learning with transductive inference
The goal of meta-learning is to train a meta-model on a collection of tasks, such
that it works well on another disjoint collection of tasks. Suppose that we are
given a collection of N tasks for training. The associated data is denoted by
D := {dt := (xt, yt)}Nt=1. In the case of few-shot learning, we are given in addition
a support set dlt in each task. In this section, we revisit the classical empirical
Bayes model for meta-learning. Then, we propose to use a transductive scheme in
the variational inference by implementing the variational posterior as a function of
xt.

6.2.1 Empirical Bayes model
Due to the hierarchical structure among data, it is natural to consider a hierarchical
Bayes model with the marginal likelihood

pf (D) =
∫
ψ
pf (D|ψ)p(ψ) =

∫
ψ

[N∏
t=1

∫
wt
pf (dt|wt)p(wt|ψ)

]
p(ψ). (6.1)

The generative process is illustrated in Figure 1 (a, in red arrows): first, a meta-
parameter ψ (i.e., hyper-parameter) is sampled from the hyper-prior p(ψ); then, for
each task, a task-specific parameter wt is sampled from the prior p(wt|ψ); finally,
the dataset is drawn from the likelihood pf (dt|wt). Without loss of generality, we
assume the log-likelihood model factorizes as

log pf (dt|wt) =
n∑
i=1

log pf (yt,i|xt,i, wt) + log p(xt,i|wt),

=
n∑
i=1
− 1
n
`t
(
ŷt,i(f(xt,i), wt), yt,i

)
+ constant. (6.2)

6.2 Meta-learning with transductive inference 123

It is the setting advocated by Minka (2005), in which the generative model p(xt,i|wt)
can be safely ignored since it is irrelevant to the prediction of yt. To simplify
the presentation, we still keep the notation pf(dt|wt) for the likelihood of the
task t and use `t to specify the discriminative model, which is also referred to
as the task-specific loss, e.g., the cross entropy loss. The first argument in `t is
the prediction, denoted by ŷt,i = ŷt,i(f(xt,i), wt), which depends on the feature
representation f(xt,i) and the task-specific weight wt.

Note that rather than following a fully Bayesian approach, we leave some
random variables to be estimated in a frequentist way, e.g., f is a meta-parameter of
the likelihood model shared by all tasks, for which we use a point estimate. As such,
the posterior inference about these variables will be largely simplified. For the same
reason, we derive the empirical Bayes (Robbins 1985, Kucukelbir and Blei 2014)
by taking a point estimate on ψ. The marginal likelihood now reads as

pψ,f (D) =
N∏
t=1

∫
wt
pf (dt|wt)pψ(wt). (6.3)

We highlight the meta-parameters as subscripts of the corresponding distributions
to distinguish from random variables. Indeed, we are not the first to formulate
meta-learning as empirical Bayes. The overall model formulation is essentially the
same as the ones considered by Amit and Meir (2018), Grant et al. (2018), Ravi
and Beatson (2018). Our contribution lies in the variational inference for empirical
Bayes.

6.2.2 Amortized inference with transduction
As in standard probabilistic modeling, we derive an evidence lower bound (ELBO)
on the log version of eq.(6.3) by introducing a variational distribution qθt(wt) for
each task with parameter θt:

log pψ,f (D) ≥
N∑
t=1

[
Ewt∼qθt

[
log pf (dt|wt)

]
−DKL

(
qθt(wt)‖pψ(wt)

)]
. (6.4)

The variational inference amounts to maximizing the ELBO with respect to
θ1, . . . , θN , which together with the maximum likelihood estimation of the meta-
parameters, we have the following optimization problem:

min
ψ,f

min
θ1,...,θN

1
N

N∑
t=1

[
Ewt∼qθt

[
− log pf (dt|wt)

]
+DKL

(
qθt(wt)‖pψ(wt)

)]
. (6.5)

However, the optimization in eq.(6.5), as N increases, becomes more and more
expensive in terms of the memory footprint and the computational cost. We
therefore wish to bypass this heavy optimization and to take advantage of the fact
that individual KL terms indeed share the same structure. To this end, instead
of introducing N different variational distributions, we consider a parameterized
family of distributions in the form of qφ(·), which is defined implicitly by a deep
neural network φ taking as input either dlt or dlt plus xt, that is, qφ(dlt) or qφ(dlt,xt).

124 EB Transductive Meta-Learning with Synthetic Gradients

Note that we cannot use entire dt, since we do not have access to yt during
meta-testing. This amortization technique was first introduced in the case of
variational autoencoders (Kingma and Welling 2013, Rezende et al. 2014), and has
been extended to Bayesian inference in the case of neural processes (Garnelo et al.
2018b).

Since dlt and xt are disjoint, the inference scheme is inductive for a variational
posterior qφ(dlt). As an example, MAML (Finn et al. 2017) takes qφ(dlt) as the Dirac
delta distribution, where φ(dlt) = θKt , is the K-th iterate of the stochastic gradient
descent

θk+1
t = θkt + η∇θEwt∼qθk

t

[
log p(dlt|wt)

]
with θ0

t = φ, a learnable initialization.
(6.6)

In this work, we consider a transductive inference scheme with variational
posterior qφ(dlt,xt). The inference process is shown in Figure 1(a, in green arrows).
Replacing each qθt in eq.(6.5) by qφ(dlt,xt), the optimization problem becomes

min
ψ,f

min
φ

1
N

N∑
t=1

[
Ewt∼qφ(dl

t
,xt)

[
− log pf (dt|wt)

]
+DKL

(
qφ(dlt,xt)(wt)‖pψ(wt)

)]
. (6.7)

In a nutshell, the meta-model to be optimized includes the feature network f , the
hyper-parameter ψ from the empirical Bayes formulation and the amortization
network φ from the variational inference.

6.3 Unrolling exact inference with synthetic gra-
dients

It is however non-trivial to design a proper network architecture for φ(dlt, xt),
since dlt and xt are both sets. The strategy adopted by neural processes (Garnelo
et al. 2018b) is to aggregate the information from all individual examples via an
averaging function. However, as pointed out by Kim et al. (2019), such a strategy
tends to underfit xt because the aggregation does not necessarily attain the most
relevant information for identifying the task-specific parameter. Extensions, such
as attentive neural process (Kim et al. 2019) and set transformer (?), may alleviate
this issue but come at a price of O(n2) time complexity. We instead design φ(dlt, xt)
to mimic the exact inference arg minθt DKL(qθt(wt)‖pψ,f (wt|dt)) by parameterizing
the optimization process with respect to θt. More specifically, consider the gradient
descent on θt with step size η:

θk+1
t = θkt − η∇θtDKL

(
qθkt (w) ‖ pψ,f (w | dt)

)
. (6.8)

We would like to unroll this optimization dynamics up to the K-th step such that
θKt = φ(dlt, xt) while make sure that θKt is a good approximation to the optimum
θ?t , which consists of parameterizing

6.3 Unrolling exact inference with synthetic gradients 125

(a) the initialization θ0
t and (b) the gradient

∇θtDKL(qθt(wt) ‖ pψ,f (wt|dt)).

By doing so, θKt becomes a function of φ, ψ and xt2, we therefore realize qφ(dlt,xt)
as qθKt .

For (a), we opt to either let θ0
t = λ to be a global data-independent initialization

as in MAML (Finn et al. 2017) or let θ0
t = λ(dlt) with a few supervisions from

the support set, where λ can be implemented by a permutation invariant network
described in Gidaris and Komodakis (2018). In the second case, the features of
the support set will be first averaged in terms of their labels and then scaled by a
learnable vector of the same size.

For (b), the fundamental reason that we parameterize the gradient is because
we do not have access to yt during the meta-testing phase, although we are able
to follow eq.(6.8) in meta-training to obtain qθ?t (wt) ∝ pf(dt|wt)pψ(wt). To make
a consistent parameterization in both meta-training and meta-testing, we thus
do not touch yt when constructing the variational posterior. Recall that the true
gradient decomposes as

∇θtDKL

(
qθt‖pψ,f

)
= Eε

[1
n

n∑
i=1

∂`t(ŷt,i, yt,i)
∂ŷt,i

∂ŷt,i
∂wt

∂wt(θt, ε)
∂θt

]
+∇θtDKL

(
qθt‖pψ

)
(6.9)

under a reparameterization wt = wt(θt, ε) with ε ∼ p(ε), where all the terms can
be computed without yt except for ∂`t

∂ŷt,i
. Thus, we introduce a deep neural network

ξ(ŷt,i) to synthesize it. The idea of synthetic gradients was originally proposed
by Jaderberg et al. (2017) to parallelize the back-propagation. Here, the purpose
of ξ(ŷt,i) is to update θt regardless of the groundtruth labels, which is slightly
different from its original purpose. Besides, we do not introduce an additional
loss between ξ(ŷt,i) and ∂`t

∂ŷt,i
since ξ(ŷt,i) will be driven by the objective in eq.(6.7).

As an intermediate computation, the synthetic gradient is not necessarily a good
approximation to the true gradient.

To sum up, we have derived a particular implementation of φ(dlt, xt) by param-
eterizing the exact inference update, namely eq.(6.8), without using the labels of
the query set, where the meta-model φ includes an initialization network λ and
a synthetic gradient network ξ, such that φ(xt) = θKt , the K-th iterate of the
following update:

θk+1
t = θkt − η

[
Eε
[1
n

n∑
i=1
ξ(ŷt,i)

∂ŷt,i
∂wt

∂wt(θkt , ε)
∂θt

]
+∇θtDKL

(
qθkt ‖pψ

)]
. (6.10)

The overall algorithm is depicted in Algorithm 4. We also make a side-by-side
comparison with MAML shown in Figure 1. Rather than viewing eq.(6.10) as

2θKt is also dependent of f . We deliberately remove this dependency to simplify the update
of f .

126 EB Transductive Meta-Learning with Synthetic Gradients

Classifier 
forward

SGDθ0 SGD SGDθ1

θK

xt f(xt)
f

xl
t f(xl

t)

 init

yl
t

θ
f(x) . detach()

̂y grad

Classifier 
backward ∇θ DKL ξ(̂y) ≈

∂ℓ
∂ ̂y

ξ

λ

Classifier 
forward ̂yt

Loss 
yt

KL

ℓt

DKL(qθK∥pψ)

+ −ELBO

Synthetic  
gradient  
module

Figure 2: The computation graph to compute the negative ELBO, where the input and output
of the synthetic gradient module are highlighted in red. The detach() is used to stop the
back-propagation down to the feature network. Note that we do not include every computation
for simplicity.

an optimization process, it may be more precise to think of it as a part of the
computation graph created in the forward-propagation. The computation graph
of the amortized inference is shown in Figure 2,

As an extension, if we were deciding to estimate the feature network f in a
Bayesian manner, we would have to compute higher-order gradients as in the
case of MAML. This is inpractical from a computational point of view and needs
technical simplifications (Nichol et al. 2018). By introducing a series of synthetic
gradient networks in a way similar to Jaderberg et al. (2017), the computation
will be decoupled into computations within each layer, and thus becomes more
feasible. We see this as a potential advantage of our method and leave this to our
future work3.

6.4 Generalization analysis of empirical Bayes
via the connection to information bottleneck

The learning of empirical Bayes (EB) models follows the frequentist’s approach,
therefore, we can use frequentist’s tool to analyze the model. In this section, we
study the generalization ability of the empirical Bayes model through its connection
to a variant of the information bottleneck principle Achille and Soatto (2017),
Tishby et al. (2000).

3We do not insist on Bayesian estimation of the feature network because most Bayesian
versions of CNNs underperform their deterministic counterparts.

6.4 Generalization analysis of empirical Bayes via the connection to
information bottleneck 127

Algorithm 4 Variational inference with synthetic gradients for empirical Bayes
1: Input: the dataset D; the step size η; the number of inner iterations K;

pretrained f .
2: Initialize the meta-models ψ, and φ = (λ, ξ).
3: while not converged do
4: Sample a task t and the associated query set dt (plus optionally the support

set dlt).
5: Compute the initialization θ0

t = λ or θ0
t = λ(dlt).

6: for k = 1, . . . , K do
7: Compute θkt via eq.(6.10).
8: end for
9: Compute wt = wt(θKt , ε) with ε ∼ p(ε).
10: Update ψ ← ψ − η∇ψDKL(qθKt (ψ)‖pψ).
11: Update φ← φ− η∇φDKL(qφ(xt)‖pf · pψ).
12: Optionally, update f ← f + η∇f log pf (dt|wt).
13: end while

Abstract form of empirical Bayes

From eq.(6.3), we see that the empirical Bayes model implies a simpler joint
distribution since

log pψ,f (w1, . . . , wN ,D) =
N∑
t=1

log pf (dt|wt) + log pψ(wt), (6.11)

which is equal to the log-density of N iid samples drawn from the joint distribution

p(w, d, t) ≡ pψ,f (w, d, t) = pf (d|w, t)pψ,f (w)p(t)4 (6.12)

up to a constant if we introduce a random variable to represent the task and
assume p(t) is an uniform distribution. We thus see that this joint distribution
embodies the generative process of empirical Bayes. Correspondingly, there is
another graphical model of the joint distribution characterizes the inference process
of the empirical Bayes:

q(w, d, t) ≡ qφ(w, d, t) = qφ(w|d, t)q(d|t)q(t), (6.13)

where qφ(w|d, t) is the abstract form of the variational posterior with amortization,
includes both the inductive form and the transductive form. The coupling between
p(w, d, t) and q(w, d, t) is due to p(t) ≡ q(t) as we only have access to tasks through
sampling.

We are interested in the case that the number of tasks N → ∞, such as
the few-shot learning paradigm proposed by Vinyals et al. (2016), in which the
objective of eq.(6.7) can be rewritten in an abstract form of

Eq(t)Eq(d|t)
[
Eq(w|d,t)

[
− log p(d|w, t)

]
+DKL

(
q(w|d, t)‖p(w)

)]
. (6.14)

128 EB Transductive Meta-Learning with Synthetic Gradients

In fact, optimizing this objective is the same as optimizing eq.(6.7) from a stochastic
gradient descent point of view.

The learning of empirical Bayes with amortized variational inference can be
understood as a variational EM in the sense that the E-step amounts to aligning
q(w|d, t) with p(w|d, t) while the M-step amounts to adjusting the likelihood
p(d|w, t) and the prior p(w).

Connection to information bottleneck

The following theorem shows the connection between eq.(6.14) and the information
bottleneck principle.

Theorem 6.A.1. Given distributions q(w|d, t), q(d|t), q(t), p(w) and p(d|w, t),
we have

eq.(6.14) ≥ Iq(w; d|t) +Hq(d|w, t), (6.20)

where Iq(w; d|t) := DKL
(
q(w, d|t)‖q(w|t)q(d|t)

)
is the conditional mutual infor-

mation and Hq(w|d, t) := Eq(w,d,t)[− log q(w|d, t)] is the conditional entropy. The
equality holds when

∀t : DKL(q(w|t)‖p(w)) = 0 and DKL(q(d|w, t)‖p(d|w, t)) = 0.

In fact, the lower bound on eq.(6.14) is an extention of the information bot-
tleneck principle (Achille and Soatto 2017) under the multi-task setting, which,
together with the synthetic gradient based variational posterior, inspire the name
synthetic information bottleneck of our method. The tightness of the lower
bound depends on both the parameterizations of pf(d|w, t) and pψ(w) as well
as the optimization of eq.(6.14). It thus can be understood as how well we can
align the inference process with the generative process. From an inference process
point of view, for a given q(w|d, t), the optimal likelihood and prior have been
determined. In theory, we only need to find the optimal q(w|d, t) using the infor-
mation bottleneck in eq.(6.20). However, in practice, minimizing eq.(6.14) is more
straightforward.

Generalization of empirical Bayes meta-learning

The connection to information bottleneck suggests that we can eliminate p(d|w, t)
and p(w) from the generalization analysis of empirical Bayes meta-learning and
define the generalization error by q(w, d, t) only. To this end, we first identify the
empirical risk for a single task t with respect to particular weights w and dataset
d as

Lt(w, d) := 1
n

n∑
i=1

`t(ŷi(f(xi), w), yi). (6.15)

The true risk for task t with respect to w is then the expected empirical risk
Ed∼q(d|t)Lt(w, d). Now, we define the generalization error with respect to q(w, d, t)

6.5 Experiments 129

as the average of the difference between the true risk and the empirical risk over
all possible t, d, w:

gen(q) := Eq(t)q(d|t)q(w|d,t)
[
Ed∼q(d|t)Lt(w, d)− Lt(w, d)

]
= Eq(t)q(d|t)q(w|t)Lt(w, d)− Eq(t)q(d|t)q(w|d,t)Lt(w, d), (6.16)

where q(w|t) is the aggregated posterior of task t.
Next, we extend the result from Xu and Raginsky (2017) and derive a data-

dependent upper bound for gen(q) using mutual information.
Theorem 6.A.2. Denote by z = (x, y). If `t(ŷi(f(xi), w), yi) ≡ `t(w, zi)
is σ-subgaussian under q(w|t)q(z|t), then Lt(w, d) is σ/

√
n-subgaussian under

q(w|t)q(d|t) due to the iid assumption, and
∣∣∣gen(q)

∣∣∣ ≤
√

2σ2

n
Iq(w; d|t). (6.31)

Plugging this back to Theorem 6.A.1, we obtain a different interpretation for
the empirical Bayes ELBO.
Corollary 6.4.1. If `t is chosen to be the negative log-likelihood, minimizing the
population objective of empirical Bayes meta-learning amounts to minimizing both
the expected generalization error and the expected empirical risk:

eq.(6.14) ≥ n

2σ2 gen(q)2 + Eq(t)q(d|t)q(w|d,t)Lt(w, d). (6.17)

The Corollary 6.4.1 suggests that eq.(6.14) amounts to minimizing a regu-
larized empirical risk minimization. In general, there is a tradeoff between the
generalization error and the empirical risk controlled by the coefficient n

2σ2 , where
n = |d| is the cardinality of d. If n is small, then we are in the overfitting regime.
This is the case of the inductive inference with variational posterior q(w|dl, t),
where the support set dl is fairly small by the definition of few-shot learning.
On the other hand, if we were following the transductive setting, we expect to
achieve a small generalization error since the implemented variational posterior is
a better approximation to q(w|d, t). However, keeping increasing n will potentially
over-regularize the model and thus yield negative effect. An empirical study on
varying n can be found in Table 6.C.1 in Appendix 6.C.

6.5 Experiments
In this section, we first validate our method on few-shot learning, and then on
zero-shot learning. Note that many meta-learning methods, such as MAML, cannot
do zero-shot learning since they rely on the support set.

6.5.1 Few-shot classification
We compare SIB with state-of-the-art methods on few-shot classification problems.
Our code is available at https://github.com/hushell/sib_meta_learn.

https://github.com/hushell/sib_meta_learn

130 EB Transductive Meta-Learning with Synthetic Gradients

MiniImageNet, 5-way CIFAR-FS, 5-way
Method Backbone 1-shot 5-shot 1-shot 5-shot

MatchingNet (Vinyals et al. 2016) Conv-4-64 44.2% 57% – –
MAML (Finn et al. 2017) Conv-4-64 48.7±1.8% 63.1±0.9% 58.9±1.9% 71.5±1.0%
ProtoNet (Snell et al. 2017) Conv-4-64 49.4±0.8% 68.2±0.7% 55.5±0.7% 72.0±0.6%
Relation Net (Sung et al. 2018) Conv-4-64 50.4±0.8% 65.3±0.7% 55.0±1.0% 69.3±0.8%
GNN (Satorras and Bruna 2017) Conv-4-64 50.3% 66.4% 61.9% 75.3%
R2-D2 (Bertinetto et al. 2018) Conv-4-64 49.5±0.2% 65.4±0.2% 62.3±0.2% 77.4±0.2%
TPN (Liu et al. 2018) Conv-4-64 55.5% 69.9% – –
(Gidaris et al. 2019) Conv-4-64 54.8±0.4% 71.9±0.3% 63.5±0.3% 79.8±0.2%
SIB η=1e-3, K=0 Conv-4-64 50.0±0.4% 67.0±0.4% 59.2±0.5% 75.4±0.4%
SIB η=1e-3, K=3 Conv-4-64 58.0±0.6% 70.7±0.4% 68.7±0.6% 77.1±0.4%

SIB η=1e-3, K=0 Conv-4-128 53.62 ± 0.79% 71.48 ± 0.64% – –
SIB η=1e-3, K=1 Conv-4-128 58.74 ± 0.89% 74.12 ± 0.63% – –
SIB η=1e-3, K=3 Conv-4-128 62.59 ± 1.02% 75.43 ± 0.67% – –
SIB η=1e-3, K=5 Conv-4-128 63.26 ± 1.07% 75.73 ± 0.71% – –

TADAM (Oreshkin et al. 2018) ResNet-12 58.5±0.3% 76.7±0.3% – –
SNAIL (Santoro et al. 2017) ResNet-12 55.7±1.0% 68.9±0.9% – –
MetaOptNet-RR (Lee et al. 2019) ResNet-12 61.4±0.6% 77.9±0.5% 72.6±0.7% 84.3±0.5%
MetaOptNet-SVM ResNet-12 62.6±0.6% 78.6±0.5% 72.0±0.7% 84.2±0.5%
CTM (Li et al. 2019) ResNet-18 64.1±0.8% 80.5±0.1% – –
(Qiao et al. 2018) WRN-28-10 59.6±0.4% 73.7±0.2% – –
LEO (Rusu et al. 2019) WRN-28-10 61.8±0.1% 77.6±0.1% – –
(Gidaris et al. 2019) WRN-28-10 62.9±0.5% 79.9±0.3% 73.6±0.3% 86.1±0.2%
SIB η=1e-3, K=0 WRN-28-10 60.6±0.4% 77.5±0.3% 70.0±0.5% 83.5±0.4%
SIB η=1e-3, K=1 WRN-28-10 67.3±0.5% 78.8±0.4% 76.8±0.5% 84.9±0.4%
SIB η=1e-3, K=3 WRN-28-10 69.6±0.6 % 78.9±0.4% 78.4±0.6% 85.3±0.4%
SIB η=1e-3, K=5 WRN-28-10 70.0±0.6% 79.2±0.4% 80.0±0.6% 85.3±0.4%

Table 2: Average classification accuracies (with 95% confidence intervals) on the test-set of
MiniImageNet and CIFAR-FS. For evaluation, we sample 2000 and 5000 episodes respectively
for MiniImageNet and CIFAR-FS and test three different architectures as the feature extractor:
Conv-4-64, Conv-4-128 and WRN-28-10. We train SIB with learning rate 0.001 and try different
numbers of synthetic gradient steps K.

Datasets

We choose standard benchmarks of few-shot classification for this experiment.
Each benchmark is composed of disjoint training, validation and testing classes.
MiniImageNet is proposed by Vinyals et al. (2016), which contains 100 classes,
split into 64 training classes, 16 validation classes and 20 testing classes; each
image is of size 84×84. CIFAR-FS is proposed by Bertinetto et al. (2018), which
is created by dividing the original CIFAR-100 into 64 training classes, 16 validation
classes and 20 testing classes; each image is of size 32×32.

Evaluation metrics

In few-shot classification, a task (aka episode) t consists of a query set dt and a
support set dlt. When we say the task t is k-way-nl-shot we mean that dlt is formed
by first sampling k classes from a pool of classes; then, for each sampled class,
nl examples are drawn and a new label taken from {0, . . . , k − 1} is assigned to
these examples. By default, each query set contains 15k examples. The goal of
this problem is to predict the labels of the query set, which are provided as ground
truth during training. The evaluation is the average classification accuracy over
tasks.

6.5 Experiments 131

Network architectures

Following Gidaris and Komodakis (2018), Qiao et al. (2018), Gidaris et al. (2019),
we implement f by a 4-layer convolutional network (Conv-4-64 or Conv-4-1285) or
a WideResNet (WRN-28-10) (Zagoruyko and Komodakis 2016c). We pretrain the
feature network f(·) on the 64 training classes for a stardard 64-way classification.
We reuse the feature averaging network proposed by Gidaris and Komodakis (2018)
as our initialization network λ(·), which basically averages the feature vectors of all
data points from the same class and then scales each feature dimension differently
by a learned coefficient. For the synthetic gradient network ξ(·), we implement a
three-layer MLP with hidden-layer size 8k. Finally, for the predictor ŷij(·, wi), we
adopt the cosine-similarity based classifier advocated by Chen et al. (2019) and
Gidaris and Komodakis (2018).

Training details

We run SGD with batch size 8 for 40000 steps, where the learning rate is fixed to
10−3. During training, we freeze the feature network. To select the best hyper-
parameters, we sample 1000 tasks from the validation classes and reuse them at
each training epoch.

Comparison to state-of-the-art meta-learning methods

In Table 2, we show a comparison between the state-of-the-art approaches and
several variants of our method (varying K or f(·)). Apart from SIB, TPN (Liu
et al. 2018) and CTM (Li et al. 2019) are also transductive methods.

First of all, comparing SIB (K = 3) to SIB (K = 0), we observe a clear
improvement, which suggests that, by taking a few synthetic gradient steps, we
do obtain a better variational posterior as promised. For 1-shot learning, SIB
(when K = 3 or K = 5) significantly outperforms previous methods on both
MiniImageNet and CIFAR-FS. For 5-shot learning, the results are also comparable.
It should be noted that the performance boost is consistently observed with different
feature networks, which suggests that SIB is a general method for few-shot learning.

However, we also observe a potential limitation of SIB: when the support set
is relatively large, e.g., 5-shot, with a good feature network like WRN-28-10, the
initialization θ0

t may already be close to some local minimum, making the updates
later less important.

For 5-shot learning, SIB is sligtly worse than CTM (Li et al. 2019) and/or
Gidaris et al. (2019). CMT (Li et al. 2019) can be seen as an alternative way to
incorporate transduction – it measures the similarity between a query example and
the support set while making use of intra- and inter-class relationships. Gidaris

5Conv-4-64 consists of 4 convolutional blocks each implemented with a 3× 3 convolutional
layer followed by BatchNorm + ReLU + 2× 2 max-pooling units. All blocks of Conv-4-64 have
64 feature channels. Conv-4-128 has 64 feature channels in the first two blocks and 128 feature
channels in the last two blocks.

132 EB Transductive Meta-Learning with Synthetic Gradients

0 20 40 60 80 100 120 140

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
c

SIB evaluation

SIB: 1
2
Et‖yt − ŷt‖2

I(wt; dt)

EtDKL(qθKt
(wt)||p(wt|dt))

DKL(pψ(w)||p(w))

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

SIB dynamics

GT

init (k=0)

k=1

k=2

k=3

k=4

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

Prediction comparison

GT of task 1

SIB predictions

GT of task 2

SIB predictions

GT of task 3

SIB predictions

Figure 3: Left: the mean-square errors on Dtest, EtDKL(qθK
t

(wt)‖p(wt|dt)), DKL(pψ(w)‖p(w))
and the estimate of I(w; d) ≈ EtDKL(qθK

t
(wt)‖pψ(wt)). Middle: the predicted y’s by y = θkt x

for k = 0, . . . , 4. Right: the predictions of SIB.

et al. (2019) uses in addition the self-supervision as an auxilary loss to learn a
richer and more transferable feature model. Both ideas are complementary to SIB.
We leave these extensions to our future work.

6.5.2 Zero-shot regression: spinning lines
Since our variational posterior relies only on xt, SIB is also applicable to zero-shot
problems (i.e., no support set available). We first look at a toy multi-task problem,
where I(wt; dt) is tractable.

Denote by Dtrain := {dt}Nt=1 the train set, which consists of datasets of size
n: d = {(xi, yi)}ni=1. We construct a dataset d by firstly sampling iid Gaussian
random variables as inputs: xi ∼ N (µ, σ2). Then, we generate the weight for
each dataset by calculating the mean of the inputs and shifting with a Gaussian
random variable εw: w = 1

n

∑
i xi + εw, εw ∼ N (µw, σ2

w). The output for xi is
yi = w ·xi.We decide ahead of time the hyperparameters µ, σ, µw, σw for generating
xi and yi. Recall that a weighted sum of iid Gaussian random variables is still a
Gaussian random variable. Specifically, if w = ∑

i cixi and xi ∼ N (µi, σ2
i), then

w ∼ N (∑i ciµi,
∑
i c

2
iσ

2
i). Therefore, we have p(w) = N (µ + µw,

1
n
σ2 + σ2

w). On
the other hand, if we are given a dataset d of size n, the only uncertainty about w
comes from εw, that is, we should consider xi as a constant given d. Therefore,
the posterior p(w|d) = N (1

n

∑n
i=1 xi + µw, σ

2
w). We use a simple implementation

for SIB: The variational posterior is realized by

qθKt (w) = N (θKt , σw), θk+1
t = θkt − 10−3

n∑
i=1

xiξ(θkt xi), and θ0
t = λ ∈ R; (6.18)

`t is a mean squared error, implies that p(y|x,w) = N (wx, 1); pψ(w) is a Gaussian
distribution with parameters ψ ∈ R2; The synthetic gradient network ξ is a
three-layer MLP with hidden size 8. In the experiment, we sample 240 tasks
respectively for both Dtrain and Dtest. We learn SIB and BNN on Dtrain for
150 epochs using the ADAM optimizer (Kingma and Ba 2014), with learning
rate 10−3 and batch size 8. Other hyperparameters are specified as follows:

6.5 Experiments 133

Method Art Cartoon Sketch Photo Average

JiGen (Carlucci et al. 2019) 84.9% 81.1% 79.1% 98.0% 85.7%
Rot (Xu et al. 2019) 88.7% 86.4% 74.9% 98.0% 87.0%
SIB-Rot K = 0 85.7% 86.6% 80.3% 98.3% 87.7%
SIB-Rot K = 3 88.9% 89.0% 82.2% 98.3% 89.6%

Table 3: Multi-source domain adaptation results on PACS with ResNet-18 features. Three
domains are used as the source domains keeping the fourth one as target.

n = 32, K = 3, µ = 0, σ = 1, µw = 1, σw = 0.1. The results are shown in Figure 3.
On the left, both DKL(qθKt (wt)‖p(wt|dt)) and DKL(pψ(w)‖p(w)) are close to zero
indicating the success of the learning. More interestingly, in the middle, we see
that θ0

t , θ
1
t , . . . , θ

4
t evolves gradually towards the ground truth, which suggests

that the synthetic gradient network is able to identify the descent direction after
meta-learning.

6.5.3 Zero-shot classification: unsupervised multi-source
domain adaptation

A more interesting zero-shot multi-task problem is unsupervised domain adaptation.
We consider the case where there exists multiple source domains and a unlabeled
target domain. In this case, we treat each minibatch as a task. This makes sense
because the difference in statistics between two minibatches are much larger than in
the traditional supervised learning. The experimental setup is similar to few-shot
classification described in Section 6.5.1, except that we do not have a support set
and the class labels between two tasks are the same. Hence, it is possible to explore
the relationship between class labels and self-supervised labels to implement the
initialization network λ without resorting to support set. We reuse the same model
implementation for SIB as described in Section 6.5.1. The only difference is the
initialization network. Denote by zt := {zt,i}ni=1 the set of self-supervised labels of
task t, the initialization network λ is implemented as follows:

θ0
t = λ− η∇θLt

(
ẑt
(
ŷt(f(xt), wt(θ, ε)), f(xt)

)
, zt

)
, (6.19)

where λ6 is a global initialization similar to the one used by MAML; Lt is the
self-supervised loss, ẑt is the set of predictions of the self-supervised labels. One
may argue that θ0

t = λ would be a simpler solution. However, it is insufficient
since the gap between two domains can be very large. The initial solution yielded
by eq.(6.19) is more dynamic in the sense that θ0

t is adapted taking into account
the information from xt.

In terms of experiments, we test SIB on the PACS dataset (Li et al. 2017a),
which has 7 object categories and 4 domains (Photo, Art Paintings, Cartoon
and Sketches), and compare with state-of-the-art algorithms for unsupervised

6λ is overloaded to be both the network and its parameters.

134 EB Transductive Meta-Learning with Synthetic Gradients

domain adaptation. We follow the standard experimental setting (Carlucci et al.
2019), where the feature network is implemented by ResNet-18. We assign a self-
supervised label zt,i to image i by rotating the image by a predicted degree. This
idea was originally proposed by Gidaris et al. (2018) for representation learning
and adopted by Xu et al. (2019) for domain adaptation. The training is done
by running ADAM for 60 epochs with learning rate 10−4. We take each domain
in turns as the target domain. The results are shown in Table 3. It can be seen
that SIB-Rot (K = 3) improves upon the baseline SIB-Rot (K = 0) for zero-shot
classification, which also outperforms state-of-the-art methods when the baseline
is comparable.

6.6 Conclusion
We have presented an empirical Bayesian framework for meta-learning. To enable
an efficient variational inference, we followed the amortized inference paradigm, and
proposed to use a transductive scheme for constructing the variational posterior.
To implement the transductive inference, we make use of two neural networks: a
synthetic gradient network and an initialization network, which together enables a
synthetic gradient descent on the unlabeled data to generate the parameters of
the amortized variational posterior dynamically. We have studied the theoretical
properties of the proposed framework and shown that it yields performance boost
on MiniImageNet and CIFAR-FS for few-shot classification.

6.A Proofs 135

Appendix

Appendix

6.A Proofs

Theorem 6.A.1. Given distributions q(w|d, t), q(d|t), q(t), p(w) and p(d|w, t),
we have

eq.(6.14) ≥ Iq(w; d|t) +Hq(d|w, t), (6.20)

where Iq(w; d|t) := DKL
(
q(w, d|t)‖q(w|t)q(d|t)

)
is the conditional mutual infor-

mation and Hq(w|d, t) := Eq(w,d,t)[− log q(w|d, t)] is the conditional entropy. The
equality holds when

∀t : DKL(q(w|t)‖p(w)) = 0 and DKL(q(d|w, t)‖p(d|w, t)) = 0.

Proof. Denote by q(w|t) := Eq(d|t)q(w|d, t)q(d|t) the aggregated posterior of task t.
eq.(6.14) can be decomposed as

Eq(t)Eq(d|t)
[
Eq(w|d,t)

[
− log p(d|w, t)

]
+DKL

(
q(w|d, t)‖p(w)

)]
(6.21)

= Eq(t)Eq(d|t)Eq(w|d,t)
[

log q(w|d, t)q(w|t)
p(d|w, t)p(w)q(w|t)

]
(6.22)

= Eq(t)Eq(d|t)Eq(w|d,t)
[

log q(w|d, t)
q(w|t)

]
+ Eq(t)Eq(d|t)Eq(w|d,t)

[
− log p(d|w, t)

]

+ Eq(t)Eq(d|t)Eq(w|d,t)
[

log q(w|t)
p(w)

]
(6.23)

= Iq(w; d|t) +Hq,p(d|w, t) + Eq(t)DKL(q(w|t)‖p(w)) (6.24)
≥ Iq(w; d|t) +Hq,p(d|w, t). (6.25)

The inequality is because DKL(q(w|t)‖p(w)) ≥ 0 for all t’s. Besides, we
used the notation Hq,p, which is the conditional cross entropy.Recall that
DKL

(
q(d|w, t)‖p(d|w, t)

)
= −Hq(d|w, t) + Hq,p(d|w, t) ≥ 0. We attain the lower

bound as desired if this inequality is applied.

The following lemma and theorem show the connection between Iq(w; d|t) and
the generalization error. We first extend Xu (2016, Lemma 4.2).

136 EB Transductive Meta-Learning with Synthetic Gradients

Lemma 6.A.1. If, for all t, ft(X, Y) is σ-subgaussain under PX ⊗ PY , then∣∣∣∣EP (T)

[
EP (X,Y |T)fT (X, Y)− EP (X|T)P (Y |T)fT (X, Y)

]∣∣∣∣ ≤ √2σ2I(X;Y |T). (6.26)

Proof. The proof is adapted from the proof of Xu (2016, Lemma 4.2).

LHS ≤ EP (T)

∣∣∣∣EP (X,Y |T)fT (X, Y)− EP (X|T)P (Y |T)fT (X, Y)
∣∣∣∣ (6.27)

≤ EP (T)

√
2σ2DKL(P (X, Y |T)‖P (X|T)P (Y |T)) (6.28)

≤
√

2σ2EP (T)DKL(P (X, Y |T)‖P (X|T)P (Y |T)) (6.29)

=
√

2σ2I(X;Y |T). (6.30)

The second inequality was due to the Donsker-Varadhan variational representation
of KL divergence and the definition of subgaussain random variable.

Theorem 6.A.2. Denote by z = (x, y). If `t(ŷi(f(xi), w), yi) ≡ `t(w, zi)
is σ-subgaussian under q(w|t)q(z|t), then Lt(w, d) is σ/

√
n-subgaussian under

q(w|t)q(d|t) due to the iid assumption, and

∣∣∣gen(q)
∣∣∣ ≤

√
2σ2

n
Iq(w; d|t). (6.31)

Proof. First, if `t(ŷ(f(x), w), y) is σ-subgaussian under q(w|t)q(z|t), by definition,

Eq(w|t)q(z|t) exp(λ`t(w, z)) ≤ exp(λEq(w|t)q(z|t)`t(w, z)) exp(λ2σ2/2) (6.32)

It is straightforward to show Lt(w, d) is σ/
√
n-subgaussian since

Eq(w|t)q(d|t) exp(λLt(w, d)) =
n∏
i=1

Ew,zi exp(λ
n
`t(w, zi)) (6.33)

≤
n∏
i=1

exp
(
λ

n
Ew,zi`t(w, zi) + λ2σ2

2n2

)
(6.34)

= exp
(
λEw,z`t(w, z)

)
exp(λ

2σ2

2n) (6.35)

= exp
(
λEq(w|t)q(d|t)Lt(w, d)

)
exp(λ

2(σ/
√
n)2

2). (6.36)

By Lemma 6.A.1, we have∣∣∣gen(q)
∣∣∣ =

∣∣∣∣Eq(t)[Eq(w|d,t)q(d|t)Lt(w, d)− Eq(w|t)q(d|t)Lt(w, d)
]∣∣∣∣ (6.37)

≤
√

2σ2

n
I(w; d|t) (6.38)

as desired.

6.B Importance of synthetic gradients 137

6.B Importance of synthetic gradients
To further verify the effectiveness of the synthetic gradient descent, we implement an
inductive version of SIB inspired by MAML, where the initialization θ0

t is generated
exactly the same way as SIB using λ(dlt), but it then follows the iterations in
eq.(6.6) as in MAML rather than follows the iterations in eq.(6.10) as in standard
SIB.

We conduct an experiment on CIFAR-FS using Conv-4-64 feature network.
The results are shown in Table 6.B.1. It can be seen that there is no improvement
over SIB (K = 0) suggesting that the inductive approach is insufficient.

inductive SIB SIB
Training on 1-shot Training on 1-shot Training on 5-shot

Testing on Testing on Testing on
K η 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

0 - 59.7±0.5% 75.5±0.4% 59.2±0.5% 75.4±0.4% 59.2±0.5% 75.4±0.4%
1 1e-1 59.8±0.5% 71.2±0.4% 65.3±0.6% 75.8±0.4% 64.5±0.6% 77.3±0.4%
3 1e-1 59.6±0.5% 75.9±0.4% 65.0±0.6% 75.0±0.4% 64.0±0.6% 77.0±0.4%
5 1e-1 59.9±0.5% 74.9±0.4% 66.0±0.6% 76.3±0.4% 64.0±0.5% 76.8±0.4%
1 1e-2 59.7±0.5% 75.5±0.4% 67.8±0.6% 74.3±0.4% 63.6±0.6% 77.3±0.4%
3 1e-2 59.5±0.5% 75.8±0.4% 68.6±0.6% 77.4±0.4% 67.8±0.6% 78.5±0.4%
5 1e-2 59.8±0.5% 75.7±0.4% 67.4±0.6% 72.6±0.6% 67.7±0.7% 77.7±0.4%
1 1e-3 59.5±0.5% 75.6±0.4% 66.2±0.6% 75.7±0.4% 64.6±0.6% 78.1±0.4%
3 1e-3 59.9±0.5% 75.9±0.4% 68.7±0.6% 77.1±0.4% 66.8±0.6% 78.4±0.4%
5 1e-3 59.4±0.5% 75.7±0.4% 69.1±0.6% 76.7±0.4% 66.7±0.6% 78.5±0.4%
1 1e-4 58.8±0.5% 75.5±0.4% 59.0±0.5% 75.7±0.4% 59.3±0.5% 75.7±0.4%
3 1e-4 59.4±0.5% 75.9±0.4% 58.9±0.5% 75.6±0.4% 59.3±0.5% 75.9±0.4%
5 1e-4 59.3±0.5% 75.3±0.4% 60.1±0.5% 76.0±0.4% 60.5±0.5% 76.4±0.4%

Table 6.B.1: Average 5-way classification accuracies (with 95% confidence intervals) with
Conv-4-64 on the test set of CIFAR-FS. For each test, we sample 5000 episodes containing 5
categories (5-way) and 15 queries in each category. We report the results with using different
learning rate η as well as different number of updates K. Note that K = 0 is the performance
only using the pre-trained feature.

6.C Varying the size of the query set
We notice that changing the size of dt (i.e., n) during training does make a difference
on testing. The results are shown in Table 6.C.1.

138 EB Transductive Meta-Learning with Synthetic Gradients

n
5-way, 5-shot 5-way, 1-shot

Validation Test Validation Test

3 77.97 ± 0.34% 75.91 ± 0.66% 63.60 ± 0.52% 61.32 ± 1.02%
5 78.14 ± 0.35% 76.01 ± 0.66% 64.67 ± 0.55% 62.50 ± 1.02%
10 78.30 ± 0.35% 76.22 ± 0.66% 65.34 ± 0.56% 63.22 ± 1.04%
15 77.53 ± 0.35% 75.43 ± 0.67% 65.14 ± 0.55% 62.59 ± 1.02%
30 76.21 ± 0.35% 74.04 ± 0.67% 63.37 ± 0.53% 60.96 ± 0.98%
45 75.65 ± 0.36% 73.27 ± 0.66% 62.08 ± 0.51% 59.59 ± 0.93%

Table 6.C.1: Average classification accuracies on the validation set and the test set of Mini-
ImageNet with backbone Conv-4-128. We modify the number of query images, i.e., n, for each
episode to study the effect on generalization.

139

Chapter

7 Variational Information Distillation
for Knowledge Transfer

Abstract
Transferring knowledge from a teacher neural network pretrained on the same or a
similar task to a student neural network can significantly improve the performance
of the student neural network. Existing knowledge transfer approaches match
the activations or the corresponding hand-crafted features of the teacher and the
student networks. We propose an information-theoretic framework for knowledge
transfer which formulates knowledge transfer as maximizing the mutual information
between the teacher and the student networks. We compare our method with existing
knowledge transfer methods on both knowledge distillation and transfer learning
tasks and show that our method consistently outperforms existing methods. We
further demonstrate the strength of our method on knowledge transfer across
heterogeneous network architectures by transferring knowledge from a convolutional
neural network (CNN) to a multi-layer perceptron (MLP) on CIFAR-10. The
resulting MLP significantly outperforms the-state-of-the-art methods and it achieves
similar performance to the CNN with a single convolutional layer.

140 Variational Information Distillation for Knowledge Transfer

Figure 1: Conceptual diagram of the proposed knowledge transfer method. The student network
efficiently learns the target task by minimizing the cross-entropy (CE) loss while retaining high
mutual information (MI) with the teacher network. The mutual information is maximized by
learning to estimate the distribution of the activations in the teacher network, provoking the
transfer of knowledge.

7.1 Introduction

Deep neural networks (DNNs) play important roles in various computer vision tasks,
e.g., depth estimation (Eigen et al. 2014), pose estimation (Toshev and Szegedy
2014), optical flow (Dosovitskiy et al. 2015), object classification (He et al. 2016c),
detection (Girshick 2015), and segmentation (Simonyan and Zisserman 2014b).
A typical DNN approach for a computer vision task is to train a sophisticated
end-to-end neural network with a large amount of labeled data. Such an approach
often delivers state-of-the-art performance if a sufficient amount of data is available.
However, in many cases, it is impossible to gather sufficiently large data to train a
DNN. For example, in many medical image applications (Schlegl et al. 2014), the
amount of available data is constrained by the number of patients of a particular
disease.

A popular approach for handling such lack of data is transfer learning (Pan et al.
2010), where the goal is to transfer knowledge from the source task to facilitate
learning on the target task. Typically, one considers the source task to be generic
with a larger amount of available data that contains useful knowledge for learning
the target task, e.g., knowledge from natural image classification (Russakovsky
et al. 2015) is likely to be useful for fine-grained bird classification (Welinder
et al. 2010). Hinton et al. (2015) proposed the teacher-student framework for
transferring such knowledge between DNNs being trained on the source and target
tasks respectively. The high-level idea is to introduce an additional regularization
for the DNN being trained on the target task, i.e., the student network, which
allows learning the knowledge existing in the DNN that was pre-trained on the
source task, i.e., the teacher network. While the framework was originally designed
for knowledge transfer between DNNs on the same dataset, recent works (Yim
et al. 2017, Zagoruyko and Komodakis 2016b) started exploiting its potential for

7.1 Introduction 141

more general transfer learning tasks, i.e., when the source data and the target
data are different.

Many knowledge transfer methods have been proposed with various intuitions.
Hinton et al. Hinton et al. (2015) and Ba and Caruana Ba and Caruana (2014)
propose to match the final layers of the teacher and the student network, as the
outputs from the final layer of the teacher network provide more information than
raw labels. Romero et al. Romero et al. (2014) proposes to match intermediate
layers of the student network to the corresponding layers of the teacher network.
Recent works (Chen et al. 2018, Huang and Wang 2017, Yim et al. 2017, Zagoruyko
and Komodakis 2016b) relax the regularization of matching the entire layer by
matching carefully designed features/statistics extracted from intermediate layers
of the teacher and the student networks, e.g., attention maps (Zagoruyko and
Komodakis 2016b) and maximum mean discrepancy (Huang and Wang 2017).

Evidently, there is no commonly agreed theory behind knowledge transfer. This
causes difficulty in understanding empirical results and in developing new methods
in a more principled way. In this paper, we propose variational information
distillation (VID) as an attempt towards this direction in which we formulate the
knowledge transfer as maximization of the mutual information between the teacher
and the student networks. This framework proposes an actionable objective for
knowledge transfer and allows us to quantify the amount of information that
is transferred from a teacher network to a student network. Since the mutual
information is computationally intractable, we employ a variational information
maximization (Agakov 2004) scheme to maximize the variational lower bound
instead. See Figure 1 for the conceptual diagram of the proposed knowledge transfer
method. We further show that several existing knowledge transfer methods (Li
and Hoiem 2017, Romero et al. 2014) can be derived as specific implementations
of our framework by choosing different forms of the variational lower bound. We
empirically validate our VID framework, which significantly outperforms existing
methods. We observe the gap is especially large in the cases of small data and
heterogeneous architectures.

In summary, the overall contributions of our paper are as follows:

• We propose variation information distillation, a principled knowledge transfer
framework based on maximizing mutual information between two networks
based on the variational information maximization technique.

• We demonstrate that VID generalizes several existing knowledge transfer
method. In addition, our implementation of the framework empirically outper-
forms the state-of-the-art knowledge transfer methods on various knowledge
transfer experiments, including knowledge transfer between (heterogeneous)
DNNs on the same dataset or on different datasets.

• In particular, we demonstrate that heterogeneous knowledge transfer between
convolutional neural networks (CNN) and multilayer perceptrons (MLP) is
possible on CIFAR-10. Our method yields a student MLP that significantly
outperforms the best-reported MLPs (Lin et al. 2015, Urban et al. 2017) in
the literature.

142 Variational Information Distillation for Knowledge Transfer

7.2 Variational information distillation (VID)

In this section, we describe VID as a general framework for the knowledge transfer
in the teacher-student framework. Specifically, consider training a student neural
network on a target task, given another teacher neural network pre-trained on a
similar (or related) source task. Note that the source task and the target task can
be the same. The underlying assumption is that the layers in the teacher network
have been trained to represent certain attributes of given inputs that exist in
both the source task and the target task. For a successful knowledge transfer, the
student network must learn how to incorporate the knowledge of such attributes
to its own learning.

From a perspective of information theory, knowledge transfer can be expressed
as retaining high mutual information between the layers of the teacher and the
student networks. More specifically, consider an input random variable x drawn
from the target data distribution p(x) and K pairs of layers R = {(T (k),S(k))}Kk=1,
where each pair (T (k),S(k)) is selected from the teacher network and the student
network respectively. Feedforwarding the input x through the networks induces K
pairs of random variables {(t(k), s(k))}Kk=1 which indicate activations of the selected
layers, e.g., t(k) = T (k)(x). The mutual information between the pair of random
variables (t, s) is defined by:

I(t; s) = H(t)−H(t|s)
= −Et[log p(t)] + Et,s[log p(t|s)], (7.1)

where the entropy H(t) and the conditional entropy H(t|s) were derived from
the joint distribution p(t, s). Note that the joint distribution p(t, s) is a result of
aggregation over the layers with input x sampled from the empirical distribution
p(x). Intuitively, the definition of I(t; s) can be understood as a reduction in
uncertainty about the knowledge of the teacher encoded in its layer t when the
the student layer s is known.

We now define the following loss function which aims to learn a student network
for the target task while encouraging high mutual information with the teacher
network:

L = LS −
K∑
k=1

λkI(t(k), s(k)), (7.2)

where LS is the task-specific loss function for the target task and λk > 0 is
the hyper-parameter introduced for regularization of the mutual information.
Equation eq.(7.2) needs to be minimized with respect to the parameters of the
student network. However, the minimization is hard since the computation of the
exact mutual information is intractable. We instead propose a variational lower
bound for each mutual information term I(t; s), in which we define a variational

7.2 Variational information distillation (VID) 143

(a) input (b) 0-th

epoch

(c) 40-th

epoch

(d) 160-th

epoch
(e) no

transfer

(f) magnitude

of th,w

Figure 2: Plots for the heat maps corresponding to the variational distribution evaluated
for spatial dimensions of the intermediate layer in the teacher network, i.e., log q(th,w|s) =∑
c log q(tc,h,w|s). Each figure corresponds to (a) original input image, (b, c, d) log-likelihood

log q(th,w|s) that was normalized and interpolated to fit the spatial dimension of the input image
(red pixels correspond to high probability), (d) log-likelihood of variational distribution optimized
for the student network trained without any knowledge transfer applied and (f) magnitude of
the layer t averaged for each spatial dimensions.

distribution q(t|s) that approximates p(t|s):

I(t; s) = H(t)−H(t|s)
= H(t) + Et,s[log p(t|s)]
= H(t) + Et,s[log q(t|s)] + Es[DKL(p(t|s)||q(t|s))]
≥ H(t) + Et,s[log q(t|s)], (7.3)

where the expectations are over the distribution p(t, s) and the last inequality
is due to the non-negativity of the Kullback-Leiber divergence DKL(·). Such a
technique is known as the variational information maximization (Agakov 2004).
Finally, we obtain VID by applying the variational information maximization to
each mutual information term I(t(k), s(k)) in eq.(7.2), leading to a minimization of
the following loss function:

L̃ = LS −
K∑
k=1

λkEt(k),s(k) [log q(t(k)|s(k))]. (7.4)

The objective L̃ is jointly minimized over the parameters of the student network
and the variational distribution q(t|s). Note that the entropy term H(t) has
been removed from the equation eq.(7.3) since it is constant with respect to the
parameters to be optimized. Alternatively, one could interpret the objective eq.(7.4)
as jointly training the student network for the target task and maximization of the

144 Variational Information Distillation for Knowledge Transfer

conditional likelihood to fit the activations of the selected layers from the teacher
network. By doing so, the student network obtains the “compressed” knowledge
required for recovering activations of the selected layers in the teacher network.

7.2.1 Algorithm formulation
We further specify our framework by choosing a form made for the variational distri-
bution q(t|s). In general, we employ a Gaussian distribution with heteroscedastic
mean µ(·) and homoscedastic variance σ as the variational distribution q(t|s), i.e.,
the mean µ(·) is a function of s and the standard deviation σ is not. Next, the pa-
rameterization of µ(·) and σ is further specified by the type of layer corresponding
to t. When t corresponds to intermediate layer of the teacher network with spatial
dimensions indicating channel, height and width respectively, i.e., t ∈ RC×H×W ,
our choice of variational distribution is expressed as follows:

− log q(t|s) = −
C∑
c=1

H∑
h=1

W∑
w=1

log q(tc,h,w|s) (7.5)

=
C∑
c=1

H∑
h=1

W∑
w=1

log σc + (tc,h,w − µc,h,w(s))2

2σ2
c

+ constant,

where tc,h,w denote scalar components of t indexed by (c, h, w). Further, µc,h,w
represents the output of a single unit from the neural network µ(·) consisting of
convolutional layers and the variance is ensured to be positive using the softplus
function, i.e., σ2

c = log(1 + exp(αc)) + ε where αc ∈ R being the parameter to
be optimized and ε > 0 is minimum variance introduced for numerical stability.
Typically, one can choose s from the student network with similar hierarchy
and spatial dimension as t. When spatial dimension of two layers are equal,
1× 1 convolutional layers are typically used for efficient parameterization of µ(·).
Otherwise, convolution or transposed convolution with larger kernel size could be
used to match the spatial dimensions.

We additionally consider the case when the layer t = T (logit)(x) ∈ RN corre-
sponds to the logit layer of the teacher network. Here, our choice of the variational
distribution is expressed as follows:

− log q(t|s) = −
N∑
n=1

log q(tn|s) (7.6)

=
N∑
n=1

log σn + (tn − µn(s))2

2σ2
n

+ constant,

where tn indicates the n-th entry of the vector t, µn represents the output of a
single unit of neural network µ(·) and σn is parameterized by softplus function to
enforce positivity. For this case, the corresponding layer s in the student network
is the penultimate layer S(pen) instead of the logit layer in order to match the
hierarchy of two layers without being too restrictive on the output of the student
network. Furthermore, we found that using a simple linear transformation for the

7.2 Variational information distillation (VID) 145

parameterization of the mean function was sufficient in practice, i.e., µ(s) = Ws
for some weight matrix W.

The aforementioned implementations turned out to perform satisfactorily during
the experiments. We also considered using heteroscedastic variance σ(·), but it gave
unstable training with ignorable improvements. Other types of parameterizations
such as a heavy-tailed distribution or the mixture density network (Bishop 1994)
could be used to gain additional performance, but we leave it for future exploration.

See Figure 2 for an illustration of the training VID using the implemen-
tation based on equation eq.(7.5). Here, we display the change in the evalu-
ated log-likelihood of the variational distribution aggregated over channels, i.e.,
log q(th,w|s) = ∑

c log q(tc,h,w|s), given input x (Figure 2(a)) throughout the VID
training process. One observes that the student network is trained gradually for the
variational distribution to estimate the density of the intermediate layer from the
teacher network (Figure 2(b), 2(c) and 2(d)). As a comparison, we also optimize
the variational distribution for the student network trained without knowledge
transfer, (Figure 2(e)). For this case, we observe that this particular instance
of the variational distribution fails to obtain high log-likelihoods, indicating low
mutual information between the teacher and the student networks. Interestingly,
the parts that correspond to the background achieve higher magnitudes compared
to that of the foreground in general. Our explanation is that the output of layers
corresponding to the background that mostly corresponds to zero activations
(Figure 2(f)) and contains less information, being a relatively easier target for
maximizing the log-likelihood of the variational distribution.

7.2.2 Connections to existing works

The infomax principle

We first describe the relationship between our framework and the celebrated in-
fomax principle (Linsker 1989) applied to representation learning (Vincent et al.
2010), stating that “good representation” is likely to contain much information in
the corresponding input. Especially, such a principle has been successfully applied
to semi-supervised learning for neural networks by maximizing the mutual informa-
tion between the input and output of the intermediate layer as a regularization to
learning the target task, e.g., learning to reconstruct input based on autoencoders
Rasmus et al. (2015). Interestingly, our framework can be viewed similarly as an
instance of semi-supervised learning with modification of the infomax principle:
layers of the teacher network contain important information for the target task,
and a good representation of the student network is likely to retain much of their
information. One recovers the traditional semi-supervised learning based on the
infomax principle when we set t(k) = x in the equation eq.(7.2).

Generalizing mean squared error matching

Next, we explain how existing knowledge transfer methods based on mean squared
error matching can be seen as a specific instance of the proposed framework.

146 Variational Information Distillation for Knowledge Transfer

In general, the methods will be induced from the equation eq.(7.4) by making
a specific choice of the layers R = {(T (k),S(k))}Kk=1 for knowledge transfer and
parameterization of heteroscedastic mean µ(·) in the variational distribution:

− log q(t|s) =
N∑
n=1

(tn − µn(s))2

2 + constant. (7.7)

Note that the equation eq.(7.7) corresponds to a Gaussian distribution with
unit variance over every dimension of the layer in the teacher network. Ba
and Caruana Ba and Caruana (2014) showed that knowledge can be transferred
between the teacher and the student networks that were designed for the same
task, by matching the output of logit layers T (logit),S(logit) from the teacher and
the student networks with respect to mean squared error. Such a formulation
is induced from the equation eq.(7.7) by letting R = {(T (logit),S(logit))}, and
µ(s) = s in the equation eq.(7.7). This was later extended for knowledge transfer
between the teacher and the student networks designed for different tasks by Li
and Hoiem Li and Hoiem (2017), through adding an additional linear layer on
top of the penultimate layer S(pen) in the student network to matching with logit
layer T (logit) in the teacher network. This is induced similarly from the equation
eq.(7.7) by letting R = {(T (logit),S(pen))}, and µ(·) being a linear transformation,
i.e., µ(s) = Ws. Next, Romero et al. Romero et al. (2014) proposed a knowledge
transfer loss for minimizing the mean squared error between intermediate layers
from the teacher and the student networks, with additional convolutional layer
introduced for adapting different dimension size between each pair of matched
layers. This is recovered from the regularization term in the equation eq.(7.7) by
choosing layers for the knowledge transfer to be intermediate layers of the teacher
and the student networks, and µ(·) being a linear transformation corresponding
to a single 1× 1 convolutional layer.

In general, the described methods are similar to our implementation of the
framework as they all use Gaussian distribution as the variational distribution.
However, our method differs mainly in two ways: (a) allowing to use more flexible
nonlinear functions for heteroscedastic mean and (b) modeling different variance
for each dimension in the variational distribution. This allows transferring mutual
information in a more flexible manner without wasting much capacity of the model.
Especially, modeling unit variance for all dimensions of the layer t in the teacher
network could be highly restrictive for the student network. To illustrate, the layer
of the teacher network might include an activation tn that contains information
irrelevant to the task of the student network, yet requires much capacity for
regression of µn(s) to tn. This would raise over-regularization issues, i.e., wasting
the majority of the student network’s capacity on trying to fit such a unit. Instead,
modeling high homoscedastic variance σn for such dimension make its contribution
ignorable to the overall loss, allowing one to “filter” out such unit in an efficient
way.

7.3 Experiments 147

Comparison with feature matching

Besides the knowledge transfer methods based on mean squared error matching,
several works (Chen et al. 2018, Huang and Wang 2017, Yim et al. 2017, Zagoruyko
and Komodakis 2016b) have proposed to indirectly match the handcrafted features
extracted from intermediate layers. More specifically, Zagoruyko and Komodakis
(2016b) proposed to match the “attention maps” generated from activations from
the layers. Huang and Wang (2017) later generalized the attention map to the
maximum mean discrepancy of the activations. Yim et al. (2017) proposed to
match the feature called Flow of Solution Procedure (FSP) defined by the Gram
matrix of layers adjacent in the same network. Chen et al. (2018) considered
matching the reconstructed input image from the intermediate layers of the teacher
and the student networks. These methods could be seen as smartly avoiding the
aforementioned over-regularization issue by filtering out information in the teacher
network using expert knowledge. However, such methods potentially lead to
suboptimal results when the feature extraction method is not apt for the particular
knowledge transfer task and may discard important information from the layer of
the teacher network in an irreversible way.

7.3 Experiments
We demonstrate the performance of the proposed knowledge transfer framework
by comparing VID to state-of-the-art knowledge transfer methods on image classi-
fication. We apply VID to two different locations: (a) VID between intermediate
layers of the teacher and the student network (VID-I) and (b) VID between the
logit layer of the teacher network and the penultimate layer of the student network
(VID-LP). For comparison, we consider the following knowledge transfer methods:
the original knowledge distillation (KD) Hinton et al. (2015), learning without
forgetting (LwF) Li and Hoiem (2017), hint based transfer (FitNet) (Zagoruyko
and Komodakis 2016b), activation-based attention transfer (AT) Zagoruyko and
Komodakis (2016b) and polynomial kernel-based neural selectivity transfer (NST)
Huang and Wang (2017). Note that we consider FitNet as a regularization for
training the student network (Zagoruyko and Komodakis 2016b) instead of a stage-
wise training procedure as first proposed in (Romero et al. 2014). We compare
knowledge transfer methods for knowledge transfer between same and different
datasets, which is commonly referred to as the knowledge distillation and transfer
learning tasks respectively.

In all the experiments, we select the same pairs of intermediate layers for
knowledge transfer based on VID-I, FitNet, AT and NST. Similarly, the same
pairs of layers for knowledge transfer are used for LwF and VID-LP. All the
hyper-parameters of both our and existing methods are chosen according to the
performance on a validation set, which is 20% of the training set. We carefully
pick the set of candidate values of hyper-parameters such that all the values
proposed in the original works are included. The presented performances are the
average of three repeated runs. More details about experiments are included in

148 Variational Information Distillation for Knowledge Transfer

M 5000 1000 500 100

Teacher 94.26 - - -
Student 90.72 84.67 79.63 58.84

KD 91.27 86.11 82.23 64.24
FitNet 90.64 84.78 80.73 68.90
AT 91.60 87.26 84.94 73.40
NST 91.16 86.55 82.61 64.53
VID-I 91.85 89.73 88.09 81.59

KD + AT 91.81 87.34 85.01 76.29
KD + VID-I 91.7 88.59 86.53 78.48

Table 1: Experimental results (test accuracy) of knowledge distillation on the CIFAR-10 dataset
from teacher network (WRN-40-2) to student network (WRN-16-1) with varying number of data
points per class (denoted by M).

the supplementary material. The implementation of the algorithm will be made
publicly available shortly.

7.3.1 Knowledge distillation
We first compare knowledge transfer methods on the traditional knowledge distil-
lation task, where a student network is trained on the same task as the teacher
network. By distilling the knowledge from a large teacher network into a small
student network, we can speed up the computation for prediction. We further
investigate two problems for this task: whether we can benefit from knowledge
transfer in the small data regime and how much performance we lose by reducing
the size of the student network? Note that we do not evaluate the performance of
VID-LP and LwF as they are designed for transfer learning. When applied, KD,
VID-LP and LwF delivered similar performance.

Reducing training data

Knowledge transfer can be a computationally expensive task. Given a pre-trained
teacher network on the whole training data set, we explore the possibility of using
a small portion of the training set for knowledge transfer. We demonstrate the
effect of a reduced training set by applying knowledge distillation on CIFAR-10
(Krizhevsky 2009b) with four different sizes of training data. We employ wide
residual networks (WRN) (Krizhevsky 2009b) for the teacher network (WRN-40-2)
and the student network (WRN-16-1), where the teacher network is pre-trained
on the whole training set of CIFAR-10. Knowledge distillation is applied to four
different sizes of training set: 5000 (the full size), 1000, 500, 100 data points per
class.

We compare VID-I with KD, FitNet, AT and NST. We also provide perfor-
mances of the teacher network (Teacher) and the student network trained without
any knowledge transfer (Student) as baselines. We choose four pairs of inter-

7.3 Experiments 149

(d, w) (40,2) (16, 2) (40, 1) (16, 1)

Teacher 74.16 - - -
Student 74.34 70.42 68.79 65.46

KD 75.80 72.87 70.99 66.03
FitNet 74.29 70.89 68.66 65.38
AT 74.76 71.06 69.85 65.31
NST 74.81 71.19 68.00 64.95
VID-I 75.25 73.31 71.51 66.32

KD + AT 75.86 73.13 71.4 67.07
KD + VID-I 76.11 73.69 72.16 67.19

Table 2: Experimental results (test accuracy) of knowledge distillation on the CIFAR-100
dataset from the teacher network (WRN-40-2) to the student networks (WRN-d-w) with varying
factor of depth d and width w.

mediate layers similarly to (Zagoruyko and Komodakis 2016b), each of which is
located at the end of a group of residual blocks. We implemented VID-I using
two 1 × 1 convolutional layers with hidden channel size as twice of the output
channel size. The results are shown in Table 1. Our method, VID-I, outperforms
other knowledge transfer methods consistently across all regimes. The performance
gap increases as the size of dataset get smaller, e.g., VID-I only drops 10.26% of
accuracy even when 100 data points per each class are provided to the student
network. There is a 31.88% drop without knowledge transfer and a 15.52% drop
for the best baseline, i.e., KD + AT.

Varying the size of the student network

The size of the student network gives a trade-off between the speed and the
performance in knowledge transfer. We evaluate the performance of knowledge
transfer methods on different sizes of the student network. The teacher network
(WRN-40-2) is pre-trained on the whole training set of CIFAR-100. A student
network with four choices of size, i.e., WRN-40-2, WRN-16-2, WRN-40-1, WRN-
16-1, is trained on the whole training set of CIFAR-100. We compare our VID-I
with KD, FitNet, AT and NST along with the Teacher and Student baselines. The
choices of intermediate layers are the same as the previous experiment.

The results are shown in in Table 1. As also noticed by Furlanello et al. (2018),
the student network with the same size as the teacher network outperforms the
teacher network with all the knowledge transfer methods. One observes that VID-I
consistently outperforms FitNet, AT and NST, which correspond to the same
choice of layers for knowledge transfer. It also outperforms KD except for the
case when the structure of the student network is identical to that of the teacher
network, i.e., WRN-40-2, where two methods can be combined to yield the best
performance.

150 Variational Information Distillation for Knowledge Transfer

M ≈80 50 25 10

Student 48.13 37.69 27.01 14.25
Finetuned 70.97 66.04 58.13 47.91

LwF 63.43 51.79 41.04 22.76
FitNet 71.34 60.45 54.78 36.94
AT 58.21 48.66 43.66 27.01
NST 55.52 46.34 33.21 20.82
VID-LP 67.91 58.51 47.09 31.94
VID-I 71.34 63.66 60.07 50.97

LwF + FitNet 70.97 60.37 54.48 38.73
VID-LP + VID-I 71.87 65.75 61.79 50.37

(a) MIT-67, ResNet-34 to ResNet-18

M ≈80 50 25 10

Student 53.58 43.96 29.70 15.97
Finetuned 65.97 58.51 51.72 39.63

LwF 60.90 52.01 41.57 27.76
FitNet 70.90 64.70 54.48 40.82
AT 60.90 52.16 42.76 25.60
NST 55.60 46.04 35.22 21.64
VID-LP 68.88 61.64 50.22 39.25
VID-I 72.01 67.01 59.33 45.90

LwF + FitNet 70.52 64.10 54.63 40.15
VID-LP + VID-I 71.72 66.49 58.96 45.89

(b) MIT-67, ResNet-34 to VGG-9

Table 3: Experimental results (test accuracy) of transfer learning from the teacher network
(ResNet-34) to the student network (ResNet-18/VGG-9) for the MIT-67 dataset with varying
number of data points per class (denoted by M). We use M ≈Mavg to denote the setting where
the number of data points per class is non-uniform and Mavg in average.

7.3.2 Transfer learning

We evaluate knowledge transfer methods on transfer learning. The teacher network
is a residual network (ResNet-34) (He et al. 2016c) pre-trained on the ImageNet
dataset (Russakovsky et al. 2015). We apply transfer learning to improve the
performance of two separate image classification tasks. The first task is a fine-
grained bird species classification based on the CUB-200-2011 dataset (Welinder
et al. 2010), which contains 11,788 images in total for 200 bird species. The second
task is an indoor scene classification based on the MIT-67 dataset (Quattoni and
Torralba 2009), which contains 15,620 images for 67 classes of indoor scenes. For
both tasks, there are a relatively few numbers of images per class, which can
significantly benefit from knowledge transfer from the ImageNet classification task.
To evaluate the performance at various levels of data scarcity, we subsample both

7.3 Experiments 151

M ≈29.95 20 10 5

Student 37.22 24.33 12.00 7.09
Finetuned 76.69 71.00 59.25 44.07

LwF 55.18 42.13 26.23 14.27
FitNet 66.63 56.63 46.68 31.04
AT 54.62 41.44 28.90 16.55
NST 55.01 41.87 23.76 15.63
VID-LP 65.59 54.12 39.20 27.86
VID-I 73.25 67.20 56.86 46.21

LwF + FitNet 68.69 58.81 48.86 31.30
VID-LP + VID-I 69.71 63.94 52.87 41.12

(a) CUB-200-2011, ResNet-34 to ResNet-18

M ≈29.95 20 10 5

Student 44.59 32.10 15.69 9.66
Finetuned 60.96 51.86 46.88 39.98

LwF 52.18 38.05 25.57 13.93
FitNet 68.96 61.52 48.04 32.89
AT 56.28 43.96 28.33 13.98
NST 56.55 44.95 28.43 14.66
VID-LP 66.82 55.94 38.10 30.47
VID-I 71.51 65.69 53.29 38.09

LwF + FitNet 70.56 62.44 47.36 30.52
VID-LP + VID-I 70.00 65.14 53.78 38.76

(b) CUB-200-2011, ResNet-34 to VGG-9

Table 4: Experimental results (test accuracy) of transfer learning from the teacher network
(ResNet-34) to the student network (ResNet-18/VGG-9) for the CUB-200-2011 dataset with
varying number of data points per class (denoted by M). We use M ≈ Mavg to denote the
setting where the number of data points per class is non-uniform and Mavg in average.

datasets into three different sizes (50, 25, 10 per class for MIT-67 and 20, 10, 5
per class for CUB-200-2011) and compare the knowledge transfer methods.

We evaluate the knowledge transfer methods in two scenarios: a smaller student
network of the same architecture (ResNet-18) and different architecture (VGG-9)
(Simonyan and Zisserman 2014b). We compare our VID-I and VID-LP with
LwF, FitNet, AT and NST. We evaluate the performance of the student network
without transfer learning (Student) as a baseline. For the teacher and the student
network with ResNet architecture, we choose the outputs of the third and fourth
groups of residual blocks (from the input) as the intermediate layers for knowledge
transfer. In the case of the VGG-9 student network, we choose the fourth and
fifth max-pooling layers as the intermediate layers for knowledge transfer, which
corresponds to the same spatial dimension as the intermediate layers selected from
the teacher network. For applying VID-I to the ResNet-18 student network, we

152 Variational Information Distillation for Knowledge Transfer

Network MLP-4096 MLP-2048 MLP-1024

Student 70.60 70.78 70.90
KD 70.42 70.53 70.79
FitNet 76.02 74.08 72.91
VID-I 85.18 83.47 78.57

Urban et al. Urban et al. (2017) 74.32
Lin et al. Lin et al. (2015) 78.62

Table 5: Experimental result (test accuracy) of distillation on CIFAR-10 from the convolutional
teacher network (WRN-40-2) to the fully connected student network (MLP-h) with varying size
of hidden dimensions h.

use two 1× 1 convolutional layers with the size of intermediate channels as half
of the output channel size. When the student network is VGG-9, a single 1× 1
convolutional layer without non-linearity is used.

The results are shown in Table 3 and 4. The knowledge transfer from ResNet-34
to VGG-9 gives a very similar performance to the transfer from ResNet-34 to
ResNet-18 for all the knowledge transfer methods. This shows that knowledge
transfer methods are robust against small architecture changes. Our methods
outperform other knowledge transfer methods in all regions of comparison. Both
VID-I and VID-LP outperforms baselines that correspond to the same choice
of layers for knowledge transfer. For the MIT-67 dataset, we observe that our
algorithm outperforms even the finetuning method, which requires pre-training of
the student network on the source task.

7.3.3 Knowledge transfer from CNN to MLP
The transfer learning experiments show the robustness of the knowledge transfer
method against small architecture changes. This leads to an interesting question:
whether a knowledge transfer method can work between two completely different
network architectures. A solution to this question can open a new direction of
knowledge transfer and potentially offer solutions to many problems, e.g., speeding
up prediction of recurrent neural networks (RNNs) by transferring knowledge from
a RNN to a CNN, speeding up prediction of CNN on CPU or low-energy device
by transferring knowledge from a CNN to a multi-layer perceptron (MLP). In this
paper, we evaluate the performance of knowledge transfer from CNN to MLP on
CIFAR-10.

There is a well-known performance gap between CNN and MLP on CIFAR-10
(Lin et al. 2015, Urban et al. 2017). The state-of-the-art performance on CIFAR-10
with MLP is 78.62% with initialization from auto-encoders by Lin et al. (2015) and
74.32% using knowledge distillation by Urban et al. (2017). Urban et al. (2017)
also trained a single convolutional layer achieving the performance of 84.6% using
knowledge distillation.

We apply the knowledge transfer methods in the knowledge distillation setting

7.4 Conclusion 153

as mentioned in Section 7.3.1. We use a teacher network with convolutional layers
(WRN-40-2) pre-trained on CIFAR-10. We use a MLP with five fully connected
hidden layers as the student network, constructed by stacking one linear layer,
three bottleneck linear layers and one linear layer in sequence. Each is followed
by a non-linearity activation in between. Here, the bottleneck layer indicates a
composition of two linear layers without non-linearity that is introduced to speed
up learning by reducing the number of parameters. All the hidden layers have the
same h number of units and the bottleneck linear layer is composed of two linear
layers with a size of h× h

4 and h
4 × h.

The knowledge transfer between intermediate layers is defined between the
outputs of four residual groups of the teacher network and the outputs of the
first four fully connected layers of the student network. We compare VID-I with
KD and FitNet since these knowledge transfer methods do not rely on spatial
structures. For the same reason, AT and NST are not applicable to multilayer
perceptrons. VID-I is implemented with multiple transposed convolutional layers
without non-linearities. Specifically, the inputs for the variational distributions, i.e.,
the hidden layers of the MLP is treated as a tensor with 1× 1 spatial dimensions.
Single transposed convolutional layer with a 4 × 4 kernel, unit stride and zero
padding is followed by multiple transposed convolutional layers with a 4× 4 kernel,
two strides, and single padding in order to match the spatial dimension of the
corresponding layer of the teacher network for knowledge transfer. More details
on implementations of the student network and the auxiliary distribution are in
the supplementary material.

The results are shown in Table 5. Both FitNet and VID-I improve the perfor-
mance comparing the baseline of directly training the intermediate layers of the
student network. VID-I significantly outperforms FitNet on MLPs with different
sizes. Furthermore, MLP-4096 outperforms the the state-of-the-art performance
with MLP reported by Lin et al. (2015) (78.62%) and Urban et al. (2017) (74.32%)
significantly. More importantly, our method bridges the performance gap between
CNN (84.6% using one convolutional layer (Urban et al. 2017)) and MLP shown
in previous works.

7.4 Conclusion
In this work, we proposed the VID framework for effective knowledge transfer
by maximizing the variational lower bound of the mutual information between
two neural networks. The implementation of our algorithm is based on Gaussian
observation models and is empirically shown to outperform other benchmarks in
the distillation and transfer learning tasks. Using more flexible recognition models,
e.g., Kingma et al. (2016), for accurate maximization of mutual information and
alternative estimation of mutual information, e.g., Belghazi et al. (2018), are of
future interest. Despite our principled approach, there exist many unanswered
questions in knowledge transfer, such as which attributes of the teacher network
should be chosen as a target for transfer learning? which layers of the student
network should we transfer the knowledge into? We hope to be able to answer

154 Variational Information Distillation for Knowledge Transfer

this from an information theoretic point of view in the future.

155

Chapter

8 Exploring Weight Symmetry
in Deep Neural Networks

Abstract
We propose to impose symmetry in neural network parameters to improve parameter
usage and make use of dedicated convolution and matrix multiplication routines.
Due to significant reduction in the number of parameters as a result of the symmetry
constraints, one would expect a dramatic drop in accuracy. Surprisingly, we show
that this is not the case, and, depending on network size, symmetry can have little
or no negative effect on network accuracy, especially in deep overparameterized
networks. We propose several ways to impose local symmetry in recurrent and
convolutional neural networks, and show that our symmetry parameterizations
satisfy universal approximation property for single hidden layer networks. We
extensively evaluate these parameterizations on CIFAR, ImageNet and language
modeling datasets, showing significant benefits from the use of symmetry. For
instance, our ResNet-101 with channel-wise symmetry has almost 25% fewer
parameters and only 0.2% accuracy loss on ImageNet. Code for our experiments
is available at https: // github. com/ hushell/ deep-symmetry

https://github.com/hushell/deep-symmetry

156 Exploring Weight Symmetry in Deep Neural Networks

8.1 Introduction

For a long time neural networks had a capacity problem: making them have
too many parameters for a limited amount of data would dramatically affect
their generalization capabilities. Thus, several regularization techniques were
developed, for example, early stopping (Weigend and Huberman 1990) and L2

regularization. The advent of batch normalization (Ioffe and Szegedy 2015a),
skip-connections (Hochreiter and Schmidhuber 1997a, Srivastava et al. 2015, He
et al. 2016b), and overall architecture search helped to mitigate this problem
very recently, so that increasing capacity no longer hurts the accuracy, but even
before that it was known that “unimportant” connections between neurons can be
removed, resulting in a network with significantly fewer parameters and little or
no drop in performance. Optimal brain damage (LeCun et al. 1990b) proposed
a second order method to prune such connections. Soft weight sharing (Nowlan
and Hinton 1992, Ullrich et al. 2017b) can be used to very effectively reduce the
number of parameters in a trained network. Denil et al. (2013b) showed that it is
possible to learn part of filters and predict the rest. In fact, parameter sharing is
one of the most important features of convolutional neural networks, where sharing
is built into convolutional layer, and was thoroughly explored. Recurrent neural
networks also heavily rely on sharing parameters over multiple time steps. It is
also the key element in training siamese and triplet networks.

More recently, trained on massive amounts of data image recognition neural
networks were quickly increasing in the number of parameters, starting from
AlexNet (Krizhevsky et al. 2012a) and VGG (Simonyan and Zisserman 2015).
Network-In-Network (Lin et al. 2013b) proposed to stack MLPs which share
local receptive fields, removing the need of massive fully-connected layers, and
reducing the number of parameters to achieve the same accuracy as AlexNet
by several times. This technique was further adopted by Szegedy et al. (2015a)
in their Inception architectures. Downsampling and upsampling can also be
seen as a way of parameter sharing in SqueezeNet (Iandola et al. 2016b). More
recently, Highway (Srivastava et al. 2015) and later ResNet (He et al. 2016b)
proposed to add skip-connections, which allowed training of very deep networks
with improved accuracy. It was later shown by Wide ResNet (Zagoruyko and
Komodakis 2016a) that the number of parameters was key to their accuracy,
and depth was complementary. Either very deep, or very wide residual networks
could be trained with massive number of parameters, without suffering from
decreased accuracy. After that, parameter sharing exploration continued on
ResNet architectures. For example, Boulch (2017) proposed to share some portion
of convolutional filters in each group of residual block, for example every second
convolution, achieving relatively small performance loss.

Not all parameter sharing approaches brought both performance improvement
and reduction in parameters, and there appears to be some trade-off between
parameter sharing and computational efficiency. As an extreme case of parame-
ter sharing with significant performance loss, HyperNetworks (Ha et al. 2017b),
proposed to have another network to generate filters. Among methods improving

8.1 Introduction 157

computational efficiency, a good example is MobileNet (Howard et al. 2017b),
which suggested to reparameterize each 3× 3 convolution as a pair of depth-wise
convolution and 1× 1 convolution, can also be seen as a way of sharing parameters.
Their work was later extended to grouped 1× 1 convolution by ShuffleNet (Zhang
et al. 2018), which further reduced the complexity of residual block.

Another approach to reducing number of parameters is post processing, when
a trained networks is modified, either with or without additional fine tuning.
A number of low rank approximation by tensor decomposition approaches were
proposed, such as works of Jaderberg et al. (2014b) and Lebedev et al. (2016). For
example, Denton et al. (2014b) used low-rank decomposition of the weight matrices
to reduce the effective number of parameters in the network. Such approaches
tend to be less applicable as more parameter-effective architectures are being
invented. A very effective way of reducing parameters in a trained network is deep
compression proposed by Han et al. (2016), with a reduction of parameters of
dozens of times, achieved by pruning, weight sharing, quantization and compression.
Weight sharing locations are determined by weight values in a trained network,
similar in value neurons share the same weight. Common approach today is to
train a massive network, and reduce it later. This can even improve results over
single-time trained network (Han et al. 2017).

Recurrent neural networks are known to be significantly overparameterized
as well. For example, Kim and Rush (2016) show that it is possible to reduce
neural machine translation model size by 13× with an insignificant BLEU score
drop by doing teacher-student knowledge distillation. Several works (Merity et al.
2016, Inan et al. 2016, Kim et al. 2016) focus on reducing number of parameters
in language modeling tasks.

All of the above suggest that architectures and methods used for training deep
neural networks are suboptimal, and could be significantly improved by organizing
parameter sharing from the start. It would be interesting to learn it, and a few
attempts were made, e.g. in DCT space with hashing (Chen et al. 2016b) and FFT
space (Mathieu et al. 2014). Also, automatic architecture search approaches, such
as (Zoph et al. 2018), do not handle sharing.

Despite so much work on reducing neural network parameters, surprisingly, very
little attention has been given to weight symmetry. To the best of our knowledge,
it has not been used in the context of parameter sharing so far. We propose a
number of possible approaches to enforce symmetry on weights from scratch, i.e.
not using a pretrained network. Imposed correctly, such symmetry can significantly
reduce the number of parameters and computational complexity by sacrificing
little or no accuracy, both at train and test time. Post-processing methods such as
deep compression could be applied later. Also, our parameterizations are simple
to implement in any modern framework with automatic differentiation. Besides,
specialized routines for symmetric matrix multiplication and convolution could be
used in both training and testing (Goto and Van De Geijn 2008, Nath et al. 2011,
Igual et al. 2009).

We believe that our findings are surprising and uncover interesting properties
of deep neural networks, which could led to further advances in understanding and

158 Exploring Weight Symmetry in Deep Neural Networks

efficiency. Our contributions are summarized below.

• We propose an effective use of symmetry for model compression for the first
time;

• Explore various ways of imposing symmetry constraints;

• Experimentally show that symmetry can successfully be imposed in various
architectures and datasets, with no or little loss in accuracy;

• We show that our symmetric parameterization is generic and can be applied
to both image classification and natural language processing tasks;

8.2 Symmetric reparameterizations

In this section we introduce several ideas to impose axial symmetry on the weights
of convolutional / fully-connected layers, which prunes out a large fraction of
redundant parameters and gains computational speed-up for both training and
testing. Throughout this section we consider all operations applied to matrices,
which can be easily extended to multidimensional tensors by block symmetry.

8.2.1 Motivation

Real symmetric matrices have only real eigenvalues, while rotation matrices whose
rotation angles are positive have at least one complex eigenvalue. Thus, restricting
the weight matrix to be symmetric for some layers is equivalent to forcing these
layers to learn non-rotational transformations. In a deep neural network, this
restriction, which can be considered as an inductive bias, should not hurt the
overall performance, since different layers are encouraged to focus on particular
transformations, and then a good representation of the input is built up by
compositing all of them.

On the other hand, introducing symmetric weights for network compression
have multiple benefits:

• Symmetric matrix multiplications could deliver potential speedup over generic
BLAS routines.

• Training from scratch: it avoids additional fine tuning compared with post-
processing methods (Jaderberg et al. 2014b, Lebedev et al. 2016, Han et al.
2016).

• Easy to combine with other compression methods (e.g. with ShaResNet
(Boulch 2017)).

8.2 Symmetric reparameterizations 159

8.2.2 Soft constraints
We first try to see if it is possible to enforce symmetry constraints in a soft manner
during training, which has the advantage that training procedure remains very
similar to standard supervised training. We start by adding a penalty term to the
training loss, which leads to a soft constraint on W :

L(W) + ρ
∥∥∥vec(W)− vec(W>)

∥∥∥
p
, (8.1)

where L(W) is a task-specific loss with respect to W ; ρ is a hyper-parameter to
control the slackness of the constraints W = W>; vec(W) is an operator that
vectorizes the matrix into a column vector. For the norm of the penalty term,
we use either p = 2 or p = 1. However, L1-norm turns out to be slightly more
effective given that it promotes sparsity, which would possibly result in a larger
number of exactly symmetric weights.

Due to the soft constraints, the resulting matrix is not guaranteed to be
symmetric and so at test time we use only the upper triangular part.

8.2.3 Hard constraints
Alternatively, we can make use of a specific parameterization by a linear operator
T : W 7→ Ŵ for some layer in the neural network that explicitly encode symmetry,
where W is the actual weight and Ŵ is the constructed weight for that layer. We
are interested in the case where W has fewer elements than Ŵ , which enables a
reduction in weights while keeping exactly the same network architecture as if it is
fully-parameterized. Note that we choose T to be nonparametric, thus the only
additional burden of training is to forward and backward propagate through T ;
while in testing, since Ŵ is symmetric, we only need to store the upper triangular
of the learned Ŵ , which saves almost half of the space.

To this end, we propose different instantiations of T (W) in terms of different
ways to construct symmetric matrices.

Triangular parameterization

One of the simplest way to impose hard symmetry constraint is to define the linear
operator T as a sum of the upper triangular matrix of W ∈ RN×N , its transpose
W> and the diagonal vector v ∈ RN :

Ŵ = T (triu(W),v) := diag(v) + triu(W) + triu(W)>, (8.2)
where triu(W) returns the upper triangular part of the matrix W . Note that we
use the full matrix W in the above expression just to simplify the notation. In
fact, the triangular parameterization stores only the upper triangular of W and
the main diagonal v, while elements of the lower triangular will never be touched.
Thus, the number of parameters in this parameterization is 1

2N(N + 1), reduced by
almost 2 times compared to full parameterization. Note that (triu(W), v) should
be initialized from the same distribution as ifW is learned directly. Due to strong
sharing, the gradient with respect to W will be twice higher in magnitude, so the
learning rate needs to be adjusted accordingly.

160 Exploring Weight Symmetry in Deep Neural Networks

Average parameterization

Let us also consider a redundant, but more straightforward formulation of the
reparameterization T , in which we keep N ×N matrix W as the actual weight,
and define T as a sum of W and its transpose W> divided by two:

Ŵ = T (W) := 1
2(W +W>). (8.3)

Although this is a redundant parameterization to obtain a symmetric matrix, we
wanted to explore its performance given that it is known that overparameterized
networks are often easier to optimize / train (e.g., directly training compact
networks is much more challenging compared to first training overparameterized
ones and then properly pruning their parameters). In this case, the learning
rate remains the same since the gradient has been scaled by definition. As in
triangular parameterization, W is initialized from the same distribution as basic
non-symmetric parameterization. The number of parameters is the same as non-
symmetric parameterization at training time, but 1

2N(N + 1) at testing time due
to the fact that Ŵ is symmetric.

Eigen parameterization

In addition, we consider a more generic eigen parameterization, inspired by the
fact that any symmetric matrix has an eigen decomposition. Given a matrix
V ∈ RN×R and a vector λ ∈ RR as actual weights, T is defined by

Ŵ = T (V , λ) := V diag(λ)V >. (8.4)

Ideally, V has to be an orthogonal matrix, but we relax this constraint due to a
heavy computation of performing projected stochastic gradient descent. We still
initialize V and λ from an eigen decomposition of the initial full weight matrix.
The number of parameters in such relaxed parameterization is N(R+1) at training
time, and 1

2N(N + 1) at testing time. We empirically choose R = N/2 as it yields
similar performance as the case of R = N .

Note that a similar approach was suggested by Denil et al. (2013b), where Ŵ
is parameterized by matrices U and V with columns of U forming a dictionary of
basis functions.

LDL parameterization

There is a close relationship between the eigen decomposition of a matrix and its
LDL decomposition. Recall that the LDL decomposition factorizes a matrix as a
product of an unit lower triangular matrix L (meaning that all elements on the
diagonal are 1’s), a diagonal matrix D and the transpose of L. The advantage
of using LDL decomposition over eigen decomposition is that it is much easier
to maintain a valid decomposition of Ŵ during training. We thus also consider

8.2 Symmetric reparameterizations 161

0 1 2 3

3
2

1
0

(a)

0 1 2 3

3
2

1
0

(b)

0 1 2 3

3
2

1
0

(c)

0 1 2 3

3
2

1
0

(d)

Figure 1: N-way parameterizations. (a) Original 4 × 4 weight matrix. (b) 4-way blocking:
V is the bottom-right block; Ŵ = reflect−(reflect|(V)). (c) 4-way triangulizing: V is the
top triangle; Ŵ = reflect/(reflect\(V)). (d) 8-way triangulizing: V is the top-left triangle;
Ŵ = reflect/(reflect\(reflect|(V))).

a LDL parameterization with additional assumptions1 on Ŵ . Specifically, the
reparameterization T with actual weights L and D is given by

Ŵ = T (L,D) := LDL>, (8.5)
where L, D are restricted to be unit lower triangular matrix and diagonal matrix
respectively.

N-way symmetry parameterization

Inspired by triangular parameterization, which can be viewed as an axial symmetry
about the main diagonal, we consider a more general N-way parameterization with
respect to multiple axes of symmetry, where N denotes the number of repeated
parts. Thus, previously introduced parameterizations are 2-way symmetries.

Given V as the actual weight, which is considered in general to be smaller
than the required weight matrix W , we create a symmetrized version of W by a
composition of linear transformations

Ŵ = T1 ◦ T2 ◦ . . . ◦ Tk(V), (8.6)
where Tj(·) is a basic linear operator which does one of the following things: trans-
lation, reflection, rotation, tessellation etc. In fact, the form of N-way symmetry
is quite flexible. We consider only the cases where symmetry leads to efficient
computations in testing. In this work, we focus on two N-way parameterizations:
blocking and triangulizing. The details are listed as follows.

• Blocking: Given V as a M√
N
× M√

N
matrix, N -way blocking can be obtained

by a series of reflections (denoted by reflectaxis(·)) to include mirrors.

• Triangulizing: Given V as an isosceles right triangle with area M2

N
, Ŵ is

obtained by a series of reflections about different axes.
We demonstrate several examples of N-way symmetries in Figure 1.

1If Ŵ is symmetric and it factorizes as Ŵ = LDU = U>DL>, then by uniqueness, it
follows that Ŵ = LDL>. However, Ŵ has a LU decomposition if Ŵ satisfies a particular
rank condition studied by Okunev and Johnson (2005). Thus, we in fact assumes Ŵ is better
conditioned.

162 Exploring Weight Symmetry in Deep Neural Networks

8.2.4 Combining with other methods
It is not surprising that hard-constrained symmetry parameterization can be viewed
as a special weight sharing method. Nevertheless, symmetry parameterization is
capable of taking advantage of special matrix computation routines to speed up
both training and testing, which is not the case for unstructured weight sharing
methods such as duplicating randomly picked elements to form Ŵ .

Symmetry parameterization can also be complementary to other parameter
reduction or weight sharing methods. For example, we force weight sharing not
only between residual blocks within the same stage (Boulch 2017) but also within
the same residual block using symmetry parameterizations. We show in Table 3
that triangular parameterization can be combined with ResNeXt (Xie et al. 2016)
and MobileNet (Howard et al. 2017b), which have already been designed to take
advantage of weight sharing. Besides, post-processing methods (Han et al. 2016)
can be applied on the trained symmetric weights with fine tuning, thus further
reducing the number of parameters. We show experiments on combing channel-
wise symmetry with other parameter reduction methods (e.g. ShaResNet (Boulch
2017)) in Section 8.4.1.

8.3 Implementations of block symmetry

The proposed symmetry parameterization is a generic parameter reduction method,
which can be easily adapted to various network architectures. For example,
convolutional / linear layers in feedforward networks (such as VGG (Simonyan
and Zisserman 2015), ResNeXt (Xie et al. 2016), MobileNet (Howard et al. 2017b)
etc.) and in recurrent networks (such as LSTM (Hochreiter and Schmidhuber
1997a), GRU (Cho et al. 2014) etc.) can be symmetrized. In the case of grouped
convolution in ResNeXt, block symmetry can be imposed on each group kernel: for
instance, suppose that filters are of shape g×N×N×k×k, where g is the number
of groups, we can impose symmetry on dimensions of N ×N . However, symmetry
is not directly applicable to DenseNet (Huang et al. 2016), as the number of filters
grows with every layer. We conduct some experiments along this direction in
Section 8.4.1.

8.3.1 Imposing symmetry in convolutional neural net-
works

We denote by (W , W̃) the whole set of parameters of the convolutional neural
network, where W is the subset of parameters to be symmetrized, and W̃ is
the subset of free parameters. To be more specific, we assume there are totally
L convolutional layers being reparameterized to equip symmetric parameters.
That is, W := {W l}Ll=1 with W l satisfying certain symmetric properties: W l ∈
RNo×Ni×Kh×Kw is constructed so that the number of input channels is equal to the
number of outputs channels (i.e. Ni = No = N) and the spatial domain is a square

8.4 Experiments 163

(i.e. Kh = Kw = K). We propose to impose symmetry on slices of W l, namely,
on the slice W l

i , which is a square matrix.
Depending on which direction to slice the tensor, we have channel-wise sym-

metry and spatial symmetry. In general, we can write W l := {W l
i }i∈I . For

channel-wise symmetry, W l
i is a N ×N symmetric matrix, and I :=

{
(kh, kw) |

kh, kw ∈ {1, . . . , K}
}
; For spatial symmetry, W l

i is a K ×K symmetric matrix,
and I :=

{
(ki, ko) | ki, ko ∈ {1, . . . , N}

}
. Since these two symmetries are not

exclusive, we can indeed impose both at the same time.
In theory, both channel-wise and spatial symmetries will reduce the freedom of

layers, and their ability to approximate functions. Enforcing them to a shallow
network can be problematic, since it may significantly reduce the expressive power
of the network. Deep highway and residual networks, on the other hand, are more
robust to symmetric weights, since they have many layers that are capable to make
relatively small changes and iteratively improve the representation of the input
(Greff et al. 2017). In addition, spatial symmetry can be further motivated by the
success of scattering networks (Bruna and Mallat 2013), whose filters are fixed as
wavelets and constructed to enjoy certain symmetric properties.

We show in experiments that the proposed symmetries can be applied to several
modern deep neural networks without suffering a significant drop in both training
and testing accuracy.

8.3.2 Imposing symmetry in recurrent neural networks
We chose perhaps the most popular RNN variant, LSTM, which is known to be
overparameterized, to experiment with symmetry. In a LSTM cell, the weight
matrices between the hidden unit and gates (input, forget, output) as well as the
weight matrix between the hidden unit and itself are square, so it is immediately
valid to apply aforementioned symmetry parameterizations. This reduces about
25% parameters from the standard LSTM. We show in Section 8.4.3 that the
symmetrized LSTM works as well as the standard LSTM in language modeling.

8.4 Experiments
This section is composed as follows. We start with CIFAR experiments, where we
first test various symmetry parameterizations on wide residual networks (WRN)
by Zagoruyko and Komodakis (2016a). After determining which parameterizations
work best, we determine in which layers symmetry can be applied. We then test
it with WRN of different widths and depths to determine the best configuration
in terms of parameter reduction, computational complexity and simplicity. We
also apply the proposed symmetrization to other architectures, and show that the
conclusions drawn from CIFAR are able to transfer to larger datasets (ImageNet-1K
dataset). Finally, we apply symmetrization to language modeling tasks.

We emphasize that our goal here is not to show state-of-the-art accuracy, but
to show that very simple symmetry constraints can be used to significantly reduce

164 Exploring Weight Symmetry in Deep Neural Networks

the number of parameters in various network architectures.
There are two common ResNet variants are considered as baselines in the

following experiments: basic blocks and bottleneck blocks (He et al. 2016b). Basic
blocks have two 3 × 3 convolutional layers and a parallel residual connection;
bottleneck block is a combination of 1× 1, 3× 3 and 1× 1 convolutional layers.
Similar to WRN, we refer to WRN-n-k-blocktype as the network of depth n,
width k (number of channels multiplier), and blocktype meaning either basic or
bottleneck.

Code for all our experiments is available at https://github.com/hushell/
deep-symmetry.

8.4.1 CIFAR experiments
The results of various experiments on CIFAR-10/100 datasets are presented below.

Symmetry parameterizations

We first compare various symmetry parameterizations on CIFAR-10 with WRN-
16-1-bottleneck, which is a relatively small network enabling us to perform quick
experiments. The median validation errors over 5 runs are reported in Table 1 as
well as a comparison in terms of the number of parameters needed in training and
testing.

symmetry parameterization #parameters CIFAR-10train test

baseline (non-symmetric) 0.219M 0.219M 8.49
L1 soft constraints 0.219M 0.172M 8.61
channelwise-triangular 0.172M 0.172M 8.84
channelwise-average 0.219M 0.172M 8.83
channelwise-eigen 0.173M 0.173M 10.23
channelwise-LDL 0.172M 0.172M 9.15
spatial-average 0.219M 0.187M 9.70
spatial&channelwise-average 0.219M 0.156M 10.20

Table 1: Various parameterizations on CIFAR-10 with WRN-16-1-bottleneck. We show median
error over 5 runs and the numbers of parameters used in training and testing.

All symmetry parameterizations have certain drop in performance comparing to
the baseline. We observe that channel-wise triangular / average parameterizations
have the lowest drop. Eigen parameterization does not work well in this experiment,
which is possibly a consequence of V is not forced to be an orthogonal matrix.
On the other hand, LDL parameterization as an alternative attains a better
result. We also test soft channel-wise L1-norm (see eq. 8.1), where the number of
parameters remains the same in training, and reduced at test time by using upper
triangular weights only. The slackness is controlled by the coefficient ρ. For a large
ρ, the soft-constrained symmetrization is slightly better than hard-constrained
symmetrizations.

https://github.com/hushell/deep-symmetry
https://github.com/hushell/deep-symmetry

8.4 Experiments 165

Spatial symmetry parameterizations do not work as well as channel-wise
symmetry. This is expected since the size of spatial dimensions is much smaller
compared with channel dimensions (i.e. Ni = No > kh = kw). Thus, the constraints
imposed on spatial dimensions are much harsher making the learning much more
difficult.

Based on the aforementioned analysis, we choose triangular parameterization
(in terms of validation accuracy, parameter reduction and simplicity both at train
and test time) as the main method to conduct all experiments further in this
section.

Wide Residual Networks with symmetry

In this section we compare symmetrized WRN to its wider and thinner counterparts,
and discuss the choice of network architecture. We use the terms conv0, conv1
and conv2 to refer to the first, the second and the third convolutional layers
respectively (basic blocks have only conv0 and conv1). For our experiments we
choose the bottleneck and constrain the mid-bottleneck 3× 3 conv1 convolution
to be symmetric, keeping 1 × 1 conv0 and conv2 unconstrained. This choice is
because the approximating power of the residual block is least reduced, as real
eigenvalues of conv1 are rotated by the surrounding convolutions, resulting in
overall rich parameterization.

We present results for WRN-40-1-bottleneck and WRN-40-2-bottleneck trained
on CIFAR in Table 2. We also train thinner networks with the same number of
parameters to compare with their symmetric variants. On both datasets symmetric
parameterization compares favorably to both wider and thinner non-symmetric
counterparts in terms of accuracy and number of parameters.

base network symmetry location width #params CIFAR-10 CIFAR-100

WRN-40-1-bottleneck
none 1 0.59M 6.12 26.86
none 0.875 0.45M 6.29 28.36
conv1 1 0.45M 6.24 27.66

WRN-40-2-bottleneck
none 2.0 2.34M 4.95 22.51
none 1.75 1.79M 5.12 23.18
conv1 2.0 1.76M 4.96 22.98

Table 2: CIFAR test error (median of 5 runs) of triangular channel-wise parameterization on
WRN-40 with bottleneck layers. conv0 and conv1 refer to the first and the second convolutional
layers respectively.

We further illustrate this in Fig. 2a, where we show training and validation
accuracy of WRN with respect to various depths and widths. WRN has a lower
accuracy in shallower networks when the training accuracy does not reach 100%,
that is, the network struggles to fit into training data. In such cases symmetry
constraints damage both training and validation accuracy significantly. Here
we also notice that symmetry constraints cause much smaller accuracy drop in
networks which are able to fit into training data perfectly, having almost 100%

166 Exploring Weight Symmetry in Deep Neural Networks

training accuracy. We hereafter refer to such networks as overparameterized, and
we should note that overparameterization should not be confused with overfitting,
that is, overparameterized network do not suffer from poor generalization.

20 40 60 80 100

network depth

86

88

90

92

94

96

98

100

tr
ai

n
/t

es
t

ac
cu

ra
ci

es
,

%

0.13M

0.22M

0.50M
1.52M

0.50M

0.86M

1.97M 6.02M

0.10M

0.17M

0.38M

1.14M

0.40M

0.67M

1.49M
4.49M

WRN-bottleneck, width=1

WRN-bottleneck, width=2

WRN-bottleneck-symm, width=1

WRN-bottleneck-symm, width=2

(a) WRN of various depth and width with bottleneck
blocks and triangular symmetry. Dash (solid) lines
denote train (val) accuracy respectively (medians over
5 runs).

0 20 40 60 80 100

epoch

10

20

30

40

50

60

70

80

va
li

d
at

io
n

to
p

-5
/t

op
-1

er
ro

rs
,

%

ResNet-50, 25.6M parameters

ResNet-50, 20.0M parameters, triangular symmetry

(b) Convergence curves of top-1 (top lines) and top-5
(bottom lines) validation errors of ResNet-50 and its
triangularly symmetrized variant on ImageNet.

Figure 2: Image classification results for ResNet with symmetric filters.

Other architectures

In this section we show that triangular symmetry works as well on other architec-
tures and larger networks. We pick a residual network variant, ResNeXt, which
reduces the number of parameters and computational complexity in ResNet by
using grouped 3× 3 convolution in bottleneck block. For large networks we use
WRN-28-10, both basic and bottleneck variants, and a simple feedforward VGG.
We also apply symmetry to MobileNets, a popular architecture for mobile devices.
Even though being feedforward, it compares favorably to smaller residual networks
such as ResNet-18 and ResNet-34, with significant reduction in parameters needed
to achieve the same accuracy.

Results are presented in Table 3. We put triangular symmetry constraint on the
second layer in each residual block of WRN-basic-28-10, and on 3×3 convolutional
layers in WRN-bottleneck-28-10. In both cases, there are no drops in accuracy,
as expected in overparameterized networks which easily achieve 100% training
accuracy. Triangular parameterization works well even with ResNeXt, which has
much less parameters in 3 × 3 layers. That is also the case for VGG, which, in
contrast to others, does not have 1× 1 or depth-wise convolutions between layers
with symmetry. We believe the fact that there is no big reduction in accuracy is
due to the existence of redundant parameters. In MobileNet, we parameterize all
square 1× layers, and observe relatively small drop in accuracy.

Overall, we observe that overparameterized networks can easily benefit from
symmetry parameterizations in terms of the number of parameters and potential
speedup from more efficient implementation. It is surprising to see that triangular

8.4 Experiments 167

network symmetry #params CIFAR-10 CIFAR-100

ResNeXt-16-2-4 0.57M 6.93 28.3
ResNeXt-16-2-4 X 0.53M 7.18 28.86
MobileNet 3.2M 7.6 31.05
MobileNet X 2.0M 7.91 31.48
VGG 20M 6.11 25.75
VGG X 10.8M 6.19 26.8
WRN-28-10-basic 36.5M 3.99 18.7
WRN-28-10-basic X 26.8M 3.97 19.1
WRN-28-10-bottleneck 39.8M 3.96 18.94
WRN-28-10-bottleneck X 30.2M 3.77 18.79

Table 3: Triangular symmetry applied to various architectures on CIFAR. Triangular channel-
wise symmetry is imposed on every second convolution in residual blocks in WRN and ResNeXt,
and in all square convolutions in MobileNet and VGG. Median test accuracy of 5 runs is reported.

parameterization works well even with ResNeXt and MobileNet, which have already
been designed to enjoy weight sharing. Among all these experiments, VGG with
triangular parameterization reduces almost half of the parameters (i.e. 9.2 million),
yet the accuracy still remains almost the same.

Importance of batch normalization

One might notice that batch normalization Ioffe and Szegedy (2015a) could po-
tentially be a symmetry-breaking component when combined with symmetric
convolutional or linear layers, as it can be viewed as an affine transform of each
feature plane, or a diagonal fully connected layer. We, however, successfully apply
symmetric parameterization to networks without batch normalization.

To test the influence of batch normalization on symmetric parameterization,
we trained Network-In-Network on CIFAR with and without batch normalization,
convergence plots are presented on Fig. 3. As can be seen, the difference in
accuracies is very similar in both cases. If batch normalization played a significant
role in improving symmetric parameterization, Network-In-Network without batch
normalization (left) and triangular symmetry would have a higher accuracy drop.
We use learning rate of 0.1 to train the networks with batch normalization, and of
0.01 without. Also, for triangular parameterization without batch normalization
we reduce learning rate on upper triangular part by 2 to compensate for gradient
magnitude increase due to sharing.

Combining symmetric parameterization with ShaResNet

We discussed the possibility of combining symmetry parameterizations with other
parameter reduction methods in Section 8.2.4. Here, we conduct an experiment
that combines 2-way channelwise symmetry with ShaResNet Boulch (2017), which
is a weight sharing method that all conv1 of residual blocks (bottleneck block)
within a group (i.e. layers between two dimensionality reduction convolutions)

168 Exploring Weight Symmetry in Deep Neural Networks

0 25 50 75 100 125 150 175 200

20

40

60

80

Network-In-Network
Network-In-Network-triu

0 25 50 75 100 125 150 175 200
0

10

20

30

40

50

60

70
Network-In-Network-BN
Network-In-Network-BN-triu

Figure 3: Combining symmetric parameterization without batch normalization (left) and with
(right), Network-In-Network. Training accuracy in shown by dashed lines, validation - solid.
Accuracy drop is similar in both cases.

share the same weights. The results are shown in Table 4. It can be seen
that the combination further reduces the number of parameters, while the testing
performance is only slightly affected. In particular, with the bottleneck architecture,
triangular symmetry pluses ShaResNet reduce about 33% of parameters and the
performance drop is less than 1%.

Table 4: Combining ShaResNet Boulch (2017) with 2-way channelwise symmetry. Test errors
(mean/std/median over 5 runs) are compared for different symmetry parameterizations on
CIFAR-10 using WRN-16-1-bottleneck with symmetric conv1.

network share symmetry #params mean std median

WRN-16-1-bottleneck

none 0.219M 8.40 0.24 8.49
X none 0.171M 8.64 0.15 8.63

triangular 0.172M 8.76 0.19 8.84
X triangular 0.147M 9.49 0.34 9.36
X average 0.171M 9.35 0.23 9.25

N-way symmetries

As discussed in Section 8.2.3, it is possible to push forward the triangular parame-
terization to a more general N-way triangular parameterization. In addition to
triangulizing and blocking, we also consider a chunking implementation (a naive
N-way weight sharing: given V as a M × M

N
matrix. We define by tileN×(V)

a transforming function to tile/copy V N times to construct Ŵ = tileN×(V))
as an example to show that carefully designed N-way symmetries yield better
performance than a naive N-way weight sharing. Recall that standard triangular
parameterization is equivalent to 2-way triangulizing. In this section, we test
our proposals including chunking, blocking and triangulizing to achieve N-way
channelwise symmetry. For chunking, we examine the cases of N = 2, 4, . . . , 64. If
the number of channels in a convolutional layer is less than N, we simply set N
equal to the number of channels. For blocking and triangulizing, it is non-intuitive

8.4 Experiments 169

to come up with N-way symmetry for N > 4, so we only test the cases of N = 4, 16
and N = 2, 4, 8 respectively.

In our experiments, as shown in Fig. 4, chunking causes the steepest linear
decrease in validation accuracy. Triangular parameterizations work fine even in
the case of 8-way symmetry, which reduces almost 3

8 percentage of parameters
from 2-way symmetry while only suffer about 1% decrease in accuracy.

2 4 6 8 10 12 14 16

85

86

87

88

89

90

91

0.171M

0.147M

0.135M

0.129M

0.147M

0.129M

0.172M

0.148M

0.135M

N-way symmetry

chunk

block

triangle

Figure 4: N-way sharing (chunking) v.s. N-way symmetries (blocking, triangulizing) on
CIFAR-10 with WRN-16-1-bottleneck. x-axis represents N. y-axis represents the accuracy.

8.4.2 ImageNet experiments
In this section we present ImageNet results for networks with triangular symmetry
and without, to check if our conclusions from CIFAR transfer to larger dataset.

We start with results for relatively small networks, MobileNet and ResNet-18.
In MobileNet we impose triangular symmetry on all square 1× 1 convolutional
layers. ResNet-18 has basic block architecture and doesn’t have enough parameters
to fit into training data well, so we impose symmetry on every second 3 × 3
convolutional layer in block. Both MobileNet and ResNet-18 are relatively shallow
networks and have 28% less parameters with triangular symmetry, so, as expected,
the drop in accuracy is significant, see Table 5. Still, constrained MobileNet has
only 3M parameters and achieves almost the same accuracy with ResNet-18.

As for large networks, we trained ResNet-50 and ResNet-101 with bottleneck
block architecture and triangular symmetry on all 3 × 3 layers. As on CIFAR,
drop in accuracy is much smaller for these: a reduction of 23% parameters (which
would correspond to approximately ResNet-40 for ResNet-50 and ResNet-77 for
ResNet-101) causes only 0.5% accuracy drop compared to unconstrained ResNet-50,
and even smaller for ResNet-101, which is about 0.2%. We show convergence
curves for both ResNet-50 and its symmetric variant on Fig. 2b.

All networks were trained in the same conditions and with the same hyper-
parameters. We used large mini-batch training approach as proposed in Goyal

170 Exploring Weight Symmetry in Deep Neural Networks

network symmetry #params top-1 top-5

MobileNet 4.2M 28.18 9.8
MobileNet X 3.0M 30.57 11.6
ResNet-18 11.8M 30.54 10.93
ResNet-18 X 8.6M 31.44 11.55
ResNet-50 25.6M 23.50 6.83
ResNet-50 X 20.0M 23.98 7.25
ResNet-101 44.7M 22.14 6.09
ResNet-101 X 34.0M 22.36 6.35

Table 5: ImageNet results for networks with triangular symmetry parameterization. Smaller
networks such as MobileNet and ResNet-18 have more significant drop in accuracy than larger
ResNet-50 and ResNet-101. The latter have 23% less parameters than non-symmetric counterparts
and have drops in accuracy of 0.5% and 0.2% correspondingly

et al. (2017) on 8 GeForce 1080Ti GPUs, scaling learning rate proportionally to
mini-batch size. Also, we do not regularize batch normalization and depth-wise
convolution parameters in MobileNet. Surprisingly, our MobileNet and ResNet
baselines outperform the original networks proposed in Howard et al. (2017b) and
He et al. (2016b). We plan to make our code and networks available for download
online.

8.4.3 Language modeling

We test symmetry on a common language modeling Penn-Tree-Bank (Marcus et al.
1993) dataset. Our experimental setup reflects that of (Zaremba et al. 2014)2.
We use a network with 2-layer LSTM and dropout, and test out a medium size
configuration with 650 neurons (dropout 0.5), and a larger model with 1500 neurons
(dropout 0.65). We try to symmetrize weights corresponding to input and hidden
and gates separately and altogether, as well for each gate separately. Surprisingly,
we find that adding symmetry on all hidden gates does not hurt, and even obtain
slightly lower perplexity for both medium and large models. The results are
presented in Table 6. We use the average parameterization 1

2(W +W>) as we
notice it gives slightly better results. Also, there is no L2-regularization applied
during training, so the originalW weights converge to be almost symmetric. There
is also a large variation in final validation perplexity, so we train each network 5
times with different random seed and report mean±std results for all models.

For a fair comparison we also trained thinner networks with 565 and 1300
hidden neurons for medium and large networks correspondingly, so that the number
of parameters is approximately equal to those of hidden-symmetrized networks.
Symmetrized versions of large networks compare favourably to these networks.

We also include experimental results on a larger wikitext-2 (Merity et al. 2016)

2https://github.com/pytorch/examples/tree/master/word_language_model

https://github.com/pytorch/examples/tree/master/word_language_model

8.5 Conclusion 171

Model symmetry #parameters Penn-Tree-Bank wikitext-2
validation test validation test

LSTM-650 6.8M 85.38± 0.29 81.49± 0.04 99.59± 0.17 94.26± 0.21
LSTM-565 5.1M 85.48± 0.45 81.47± 0.28 100.60± 0.28 94.99± 0.24
LSTM-650 X 5.1M 83.73± 0.42 79.73± 0.23 100.81± 0.45 95.43± 0.37
LSTM-1500 36M 81.90± 0.54 77.95± 0.41 95.59± 0.34 90.92± 0.20
LSTM-1300 27M 80.71± 0.14 77.42± 0.18 96.08± 0.26 90.77± 0.21
LSTM-1500 X 27M 79.66± 0.41 75.69± 0.32 97.13± 0.77 91.97± 0.85

Table 6: Language modeling perplexity (lower is better) on Penn-Tree-Bank and wikitext-2
datasets. Only hidden gate weights are symmetrized with triangular parameterization. We
count only parameters in RNN, skipping encoder and decoder. Mean±std results over 5 runs are
reported.

dataset in Table 6, which is about 2 times larger than Penn-Tree-Bank, as well
experiments with symmetry on each gate separately. We apply averaging symmetry
to hidden gates of LSTM and compare to thinner networks with comparable number
of parameters. In this case symmetry slightly hurts perplexity of medium model,
and more significantly large model. This might be due to different dropout
regularization in the networks (we use the same dropout rates as in Penn-Tree-
Bank3, which may not be the best choices for wikitext-2).

8.5 Conclusion
In this paper, we have shown that, quite surprisingly, deep neural network weights
can be successfully parameterized to be symmetric without suffering a significant
loss in accuracy. The proposed symmetry parameterizations could lead to poten-
tially significant improvements for a wide range of mobile applications in terms
of computational efficiency (dedicated routines for symmetric convolutions and
matrix multiplication can be applied) and storage efficiency (memory requirements
for storing network weights are dramatically reduced).

For future work, it would be interesting to compare with other structural weight
matrices (e.g., (Zhao et al. 2017)) with computational benefits and understand
what kinds of inductive bias are implied. It should also be noted that our universal
approximation analysis holds only for approximating single univariate continuous
functions. It remains an open question what theoretical guarantees a symmetric
deep neural network can provide for more general multivariate functions.

3Suggested by https://github.com/pytorch/examples/tree/master/word_language_model

https://github.com/pytorch/examples/tree/master/word_language_model

172

173

Conclusion

The main thread of this thesis has been devoted to the efficiency of machine
learning methods. However, the emphases are different for different parts. For
probabilistic graphical models, we focused on the computational efficiency, for
which we have investigated linearly convergent algorithms with the presence of
equality constraints. For deep neural networks, we considered several efficiency
issues due to the over-parameterization. Throughout the chapters, our proposed
solutions mainly arise from variational inference. Because of its flexibility, we also
heavily explored the underlying structure of particular problems.

In Chapter 2, we reviewed the inference and learning problems of discrete
graphical models, which are NP-hard for general graphs. The computation of
learning is even heavier since each gradient step of learning involves a full inference
on the entire graph. Therefore, a strong incentive as discussed in Chapter 3 is that
we would like to learn discrete graphical models with block-coordinate approximate
inference, where blocks correspond to cliques in the graph. We devoted a large
fraction of Chapter 3 to derive this algorithm. In particular, we exploited the
fact that strong duality holds for the regularized maximum likelihood estimation.
The dual problem has a nice structure since 1) the primal solution can be directly
retrieved from the dual solution via the representer theorem and 2) the objective
can be decomposed into a non-smooth (and strongly concave) but separable part,
a smooth but non-separable part, and an equality constraint. We employ an
ADMM-like scheme to handle the equality constraint resulting in a min-max
problem. It introduces additionally a linear term and a quadratic term absorbed
by the non-smooth part and the smooth part respectively. Our contributions
lie in both the algorithmic aspect and the convergence analysis. The proposed
algorithm is inspired by inexact gradient descent. We control the number of inner
maximization steps (by a linearly convergent subroutine) to yield a linear rate
convergence for the outer minimization. Our theoretical analysis focuses on the
trade-off between the inner exactness and the outer decrease, characterizing the
global convergence in terms of the total number of inner iterations, which also
implies a linear convergence in the primal.

The second topic of the thesis is dedicated to Bayesian deep learning. Bayesian
approaches on neural networks treat the parameters or weights as random variables.
We reviewed the relationship between Bayesian neural networks and compression
in Chapter 4, as well as the recent understanding of the generalization in deep
learning via compression. Following the lossy compression scheme, namely, the
information bottleneck principle, we proposed, in Chapter 5 and Chapter 6, to use
the mutual information between the weights and the dataset as a regularizer for

174

Bayesian supervised learning and Bayesian meta-learning. We used a variational
upper bound on the mutual information, reformulated the learning problem as an
alternating minimization (aka bi-level optimization). Although this formulation
was not derived from Bayes’ rule, the optimization variables resemble the prior
and the posterior in classical Bayesian models. It can also be viewed as an
empirical Bayes approach, as discussed in Chapter 6. Apart from the insights on
the connections between the empirical Bayes and the information bottleneck, our
main contributions are the proposed new algorithms.

For supervised learning, there is only one instance of the dataset, to introduce a
mutual information regularizer, we reinterpreted the dataset as a bootstrap sample
drawn from the empirical data distribution, thus it boils down to compute the
mutual information between the weights and a bootstrap sample (or equivalently
a minibatch). The developed algorithm, as shown in Chapter 5, is referred to as
β-BNN, since the inner step resembles the SGD step for a standard BNN with the
KL term weighted by β, while the outer step maintains the aggregated posterior
(i.e., the prior) as a running average of previous variational posteriors.

For meta-learning, the main challenge is how to implement a meta-model
capable of gathering domain knowledge rapidly. Inspired by the aforementioned
alternating minimization, we proposed to parameterize the inner minimization with
respect to the variational posterior as a part of the meta-model, which consists
of a synthetic gradient network and an initialization network. In particular,
the synthetic gradient is the key to enable the transductive inference towards
a better chracterization of the inner optimization dynamics. To support this
proposal, we first showed in theory that, under this setting, the generalization error
of the variational posterior can be largely reduced by transduction. Besides, we
demonstrated that our algorithm significantly outperforms previous state-of-the-art
methods on Mini-ImageNet and CIFAR-FS.

In the last two chapters, namely, Chapter 7 and Chapter 8, we presented our
works about model compression for over-parameterized neural networks. The
compression is done by either making a compact student network (which would be
guided by a pretrained teacher network) or taking advantage of the symmetry in
the weights. We proposed a new framework in Chapter 7 for the knowledge transfer
from the teacher network to the student network by maximizing a variational lower
bound of the mutual information between the activations of these two networks.
This idea can also be used to transfer learning when the teacher is pretrained on
another task. On the other hand, we conducted multiple experiments in Chapter 8
on image classification and language modeling and verified that enforcing weight
symmetry is feasible in these tasks.

Future work: integrating data-driven methods and knowledge-driven
methods

Coming back to the discussion in the introduction, a good restarting point is a
recent blog (Sutton 2019) posted by Richard Sutton who suggests that “a bitter
lesson” we all should learn from the competition between data-driven AI and
knowledge-driven AI:

175

“1) AI researchers have often tried to build knowledge into their agents,
2) this always helps in the short term, and is personally satisfying to the
researcher, but 3) in the long run it plateaus and even inhibits further
progress, and 4) breakthrough progress eventually arrives by an opposing
approach based on scaling computation by search and learning.”

A few weeks later, Max Welling responds with a relatively neutral opinion on
Twitter (Welling 2019):

“When you have sufficient data, you do not need to impose a lot of
human generated inductive bias on your model. You can let the data
speak. However, when you do not have sufficient data available you
will need to use human-knowledge to fill the gaps.”

This is not the first debate between the supporters of data-driven methods and
knowledge-driven methods. A thought-provoking summary was published by
Marvin Minsky about thirty years ago in his article titled “Logical vs. Analogical
or Symbolic vs. Connectionist or Neat vs. Scruffy” (Minsky 1991). His insights
are of a fundamental and look-ahead character. One of the insights he shared is
that since each method has its own virtues and deficiencies, an integrated system
is needed to exploit the advantage of both:

“In favor of the top-down side, research in artificial intelligence has
told us a little – but only a little – about how to solve problems by using
methods that resemble reasoning. If we understood more about this,
perhaps we could more easily work down toward finding out how brain
cells do such things. In favor of the bottom-up approach, the brain
sciences have told us something – but again, only a little – about the
workings of brain cells and their connections. [. . .] I’ll argue that the
solution lies somewhere between these two extremes, and our problem
will be to find out how to build a suitable bridge.”

Minsky did not simply suggest that we should combine logical methods or proba-
bilistic graphical models with deep neural networks. What he meant “an integrated
system” is beyond a naive combination. He described some properties of the inte-
grated system:

“To solve typical real-world commonsense problems, a mind must have
at least several different kinds of knowledge. First, we need to represent
goals: what is the problem to be solved. Then the system must also
possess adequate knowledge about the domain or context in which
that problem occurs. Finally, the system must know what kinds of
reasoning are applicable in that area. Superimposed on all of this, our
systems must have management schemes that can operate different
representations and procedures in parallel, so that when any particular
method breaks down or gets stuck, the system can quickly shift over to
analogous operations in other realms that may be able to continue the
work.”

176

This description, however, did not provide a specific solution and obviously, none
of the solutions we have had possess all of these properties. My personal take is
the following. An AI system of this kind must be reconfigurable such that

• it is able to automatically set up different goals (i.e., losses or rewards) for
different scenarios;

• it is able to unify the feature (or knowledge) representation for the information
learned from the data or embedded through human prior knowledge.

• it embodies a general reasoning mechanism on top of the feature representa-
tions regardless of the particular problem to be solved.

• it considers robustness as equally important as its main goals.

Indeed, none of these desiderata is completely new, however, they have not been
put all together to build a functional system. Finding a principle way to integrate
different pieces is an interesting direction for future work.

On the other hand, an AI system, as argued by Lawrence (2019), will never
replace NI systems since the evolution, not to mention its time span, is unique.
As such, blending knowledge-driven methods with data-driven methods or the
other way around is arguably the most straightforward solution to build an AI
system comparable to its NI counterpart, which is like to stand on the shoulder
of the evolution giant. However, there are many foreseeable challenges towards a
reasonable implementation of such blending, among which the main technical issue
is how to unify the representations learned from different sources, which have to
be consistent when they refer to the same thing. Besides, it will be more efficient
to employ different paradigms for learning different functionalities. For example,
if we are trying to implement a football-playing AI, the data-driven methods will
be more effective in learning ball touches, dribbles and so on from practical games,
while the knowledge-driven methods will be more effective in learning gestures,
tactics, formations and so on.

Last but not least, it will still be relevant to improve variational techniques since
they are the key building blocks to realize robustness and uncertainty. For future
work, one important topic is to achieve more efficient algorithms for variational
inference. The current state-of-the-art algorithms are based on stochastic gradient
descent, thus they inherit the limitations of gradient methods – it is not a global
optimization algorithm and its convergence suffers from the oscillation near a
stationary point. To overcome bad local minima, which occurs in general variational
inference, one promising idea is to treat the optimization as an optimal control
problem. If we learn to solve this problem, taking gradient as a part of the state
information, and keeping a good balance of exploration and exploitation, we may
find a better local minimum with much faster convergence rate.

Bibliography 177

Bibliography

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentangling in
deep representations. arXiv preprint arXiv:1706.01350, 2017. (document), 4.1, 4.5.1,
4.5.2, 5.1, 6.4, 6.4

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal repre-
sentations through noisy computation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2018. 4.5.4

David Barber Felix Agakov. The im algorithm: a variational approach to information
maximization. Advances in Neural Information Processing Systems, 16:201, 2004. 7.1,
7.2

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational
information bottleneck. arXiv preprint arXiv:1612.00410, 2016. 4.5.4

Alexander A Alemi, Ben Poole, Ian Fischer, Joshua V Dillon, Rif A Saurous, and Kevin
Murphy. An information-theoretic analysis of deep latent-variable models. arXiv
preprint arXiv:1711.00464, 2017. 5.1

Alibaba. Alibaba’s ai outguns humans in reading test.
https://www.bloomberg.com/news/articles/2018-01-15/
alibaba-s-ai-outgunned-humans-in-key-stanford-reading-test, 2018. 4.1

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes
theory. In International Conference on Machine Learning, pages 205–214, 2018. 6.1,
6.2.1

Suguru Arimoto. An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Transactions on Information Theory, 18(1):14–20, 1972.
(document), 1.3, 5.2

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization
bounds for deep nets via a compression approach. arXiv preprint arXiv:1802.05296,
2018. 4.5

Yusuf Aytar and Andrew Zisserman. Tabula rasa: Model transfer for object category
detection. In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 2252–2259. IEEE, 2011. 4.6

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in
neural information processing systems, pages 2654–2662, 2014. (document), 4.6, 7.1,
7.2.2

https://www.bloomberg.com/news/articles/2018-01-15/alibaba-s-ai-outgunned-humans-in-key-stanford-reading-test
https://www.bloomberg.com/news/articles/2018-01-15/alibaba-s-ai-outgunned-humans-in-key-stanford-reading-test

178 Bibliography

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal
of Machine Learning Research, 18(19):1–53, 2017. 4.1

Wolfgang Balzer, Masanobu Takahashi, Jun Ohta, and Kazuo Kyuma. Weight quantiza-
tion in boltzmann machines. Neural Networks, 4(3):405–409, 1991. 4.4

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3):167–175, 2003. 2

Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM J. Optim., 2013. 2.3.1

David Belanger and Andrew McCallum. Structured prediction energy networks. In
International Conference on Machine Learning, pages 983–992, 2016. 2.5

David Belanger, Dan Sheldon, and Andrew McCallum. Marginal inference in mrfs using
frank-wolfe. In NIPS Workshop on Greedy Optimization, Frank-Wolfe and Friends,
2013. 2.3.1

Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R Devon Hjelm, and Aaron Courville.
Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062, 2018.
7.4

Y Bengio, S Bengio, and J Cloutier. Learning a synaptic learning rule. In IJCNN-91-
Seattle International Joint Conference on Neural Networks, volume 2, pages 969–vol.
IEEE, 1991. 6.1

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,
1994. 4.2

Yoshua Bengio, Nicolas L Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte.
Convex neural networks. In Advances in neural information processing systems, pages
123–130, 2006. 4.1

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 4.4

James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag
New York, 1985. 6.1

Umberto Bertele and Francesco Brioschi. Nonserial dynamic programming. Academic
Press, 1972. 2.3

Luca Bertinetto, João F Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi.
Learning feed-forward one-shot learners. In Advances in Neural Information Processing
Systems, pages 523–531, 2016. 4.4

Luca Bertinetto, João F. Henriques, Philip H. S. Torr, and Andrea Vedaldi. Meta-
learning with differentiable closed-form solvers. ArXiv, abs/1805.08136, 2018. ??,
6.5.1

Bibliography 179

D. P. Bertsekas. The method of multipliers for equality constraints. In Constrained
optimization and Lagrange Multiplier methods. Athena scientific, 1982. 3.4.2

Dimitri P Bertsekas. Nonlinear programming. Athena scientific, 1999. 1

Christopher M Bishop. Mixture density networks. Technical report, Citeseer, 1994. 7.2.1

Richard Blahut. Computation of channel capacity and rate-distortion functions. IEEE
transactions on Information Theory, 18(4):460–473, 1972. (document), 1.3, 1.3, 5.2

Matthew B Blaschko and Christoph H Lampert. Learning to localize objects with
structured output regression. In European conference on computer vision, pages 2–15.
Springer, 2008. 2.4.2

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022, 2003. (document)

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.
(document), 2.3.1

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learn-
ability and the vapnik-chervonenkis dimension. Journal of the ACM (JACM), 36(4):
929–965, 1989. 4.5.1

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015. (document),
4.4, 4.5.3, 4.5.3, 1, 5.2, 5.3

Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd. First order methods
beyond convexity and lipschitz gradient continuity with applications to quadratic
inverse problems. SIAM Journal on Optimization, 28(3):2131–2151, 2018. 2

Alexandre Boulch. Sharesnet: reducing residual network parameter number by sharing
weights. Proceedings of the International Conference on Learning Representations,
2017. 8.1, 8.2.1, 8.2.4, 8.4.1, 4

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Dis-
tributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends® in Machine learning, 3(1):1–122, 2011.
(document)

Y Boykov, O Veksler, and R Zabih. Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239,
2001. 2.3.2

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE
transactions on pattern analysis and machine intelligence, 35(8):1872–1886, 2013. 8.3.1

Wouter Bulten. Getting started with gans part 2: Colorful mnist. https://www.
wouterbulten.nl/blog/tech/getting-started-with-gans-2-colorful-mnist/,
2017. 5.3

https://www.wouterbulten.nl/blog/tech/getting-started-with-gans-2-colorful-mnist/
https://www.wouterbulten.nl/blog/tech/getting-started-with-gans-2-colorful-mnist/

180 Bibliography

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural
network models for practical applications. arXiv preprint arXiv:1605.07678, 2016. 1,
4.2

Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana
Tommasi. Domain generalization by solving jigsaw puzzles. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2229–2238,
2019. ??, 6.5.3

Miguel A Carreira-Perpinán and Yerlan Idelbayev. Model compression as constrained
optimization, with application to neural nets. part ii: Quantization. arXiv preprint
arXiv:1707.04319, 2017. 4.4

Rich Caruana. Learning many related tasks at the same time with backpropagation. In
Advances in neural information processing systems, pages 657–664, 1995. 4.6

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational
inference, converges to limit cycles for deep networks. In 2018 Information Theory
and Applications Workshop (ITA), pages 1–10. IEEE, 2018. 4.5.4

Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct extension of
admm for multi-block convex minimization problems is not necessarily convergent.
Mathematical Programming, 155(1-2):57–79, 2016a. (document)

Shixing Chen, Caojin Zhang, and Ming Dong. Coupled end-to-end transfer learning with
generalized fisher information. In Computer Vision and Pattern Recognition, 2018.
7.1, 7.2.2

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang.
A closer look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019. 6.5.1

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.
Compressing neural networks with the hashing trick. In International Conference on
Machine Learning, pages 2285–2294, 2015. 4.4

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen.
Compressing convolutional neural networks in the frequency domain. In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, pages 1475–1484, 2016b. ISBN 978-1-4503-4232-2. 8.1

Kyunghyun Cho, B van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. In Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8),
2014, 2014. 8.3

Heejin Choi, Ofer Meshi, and Nathan Srebro. Fast and scalable structural svm with
slack rescaling. In Artificial Intelligence and Statistics, pages 667–675, 2016. 2.4.2

Michael Collins. Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the ACL-02 conference on
Empirical methods in natural language processing-Volume 10, pages 1–8. Association
for Computational Linguistics, 2002. 2.4.2

Bibliography 181

Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L. Bartlett.
Exponentiated gradient algorithms for conditional random fields and max-margin
Markov networks. JMLR, 9:1775–1822, 2008. 3.2, 3.4.2

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015. 4.4

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016. 4.4

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012. 1.3, 1.3.1, 1.3.2, 1.3, 5.1, 5.1.1

Richard T Cox. Probability, frequency and reasonable expectation. American journal of
physics, 14(1):1–13, 1946. (document)

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.
Online passive-aggressive algorithms. Journal of Machine Learning Research, 7(Mar):
551–585, 2006. 4.6

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989a. 4.1, 4.2

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989b. (document)

Bin Dai, Chen Zhu, and David Wipf. Compressing neural networks using the variational
information bottleneck. arXiv preprint arXiv:1802.10399, 2018. 4.5.4

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. In NIPS,
pages 1646–1654, 2014a. (document)

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems, pages 1646–1654, 2014b. 3.1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009. 4.1, 4.5.1

Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting parame-
ters in deep learning. In Advances in neural information processing systems, pages
2148–2156, 2013a. 4.1, 4.4, 4.4

Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio Ranzato, and Nando de Freitas.
Predicting parameters in deep learning. In Advances in Neural Information Processing
Systems 26, pages 2148–2156. Curran Associates, Inc., 2013b. URL http://papers.
nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf. 8.1, 8.2.3

http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf

182 Bibliography

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. In
Advances in neural information processing systems, pages 1269–1277, 2014a. 4.4

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. In
Advances in Neural Information Processing Systems 27, pages 1269–1277, 2014b. 8.1

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 6.1

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75,
2014. 3.6.3

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. arXiv preprint arXiv:1703.04933, 2017. 4.5.2, 4.5.2

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir
Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning
optical flow with convolutional networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2758–2766, 2015. 7.1

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):
2121–2159, 2011. (document)

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data. arXiv preprint arXiv:1703.11008, 2017. (document), 4.1, 4.5, 4.5.1

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single
image using a multi-scale deep network. In Advances in neural information processing
systems, pages 2366–2374, 2014. 7.1

Emile Fiesler, Amar Choudry, and H John Caulfield. Weight discretization paradigm
for optical neural networks. In Optical interconnections and networks, volume 1281,
pages 164–174. International Society for Optics and Photonics, 1990. 4.4

T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable.
In International Conference on Machine Learning (ICML), pages 304–311, 2008. 2.4.2,
3.7.1

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1126–1135. JMLR. org, 2017. (document), 6.1,
6.2.2, 6.3, ??

Sebastian Flennerhag, Pablo G Moreno, Neil D Lawrence, and Andreas Damianou.
Transferring knowledge across learning processes. International Conference on Learning
Representations (ICLR), 2019. 6.1

Bibliography 183

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956. 2.4.2

Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent Itti, and Anima
Anandkumar. Born again neural networks. arXiv preprint arXiv:1805.04770, 2018.
(document), 7.3.1

Shigeru Furuichi. Information theoretical properties of Tsallis entropies. Journal of
Mathematical Physics, 47(2):023302, 2006. 3.C

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton,
Murray Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional
neural processes. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pages 1704–1713, 2018a. 4.4

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,
SM Eslami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622,
2018b. 6.2.2, 6.3

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6:721–741, 1984. (document)

Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. Pac-
bayesian theory meets bayesian inference. In Advances in Neural Information Process-
ing Systems, pages 1884–1892, 2016. 4.5.3

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without for-
getting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4367–4375, 2018. (document), 4.4, 6.1, 6.3, 6.5.1

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1v4N2l0-. 6.5.3

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu
Cord. Boosting few-shot visual learning with self-supervision. arXiv preprint
arXiv:1906.05186, 2019. ??, ??, 6.5.1, 6.5.1

Gauthier Gidel, Fabian Pedregosa, and Simon Lacoste-Julien. Frank-wolfe splitting via
augmented lagrangian method. In Amos Storkey and Fernando Perez-Cruz, editors,
Proceedings of the Twenty-First International Conference on Artificial Intelligence and
Statistics, volume 84 of Proceedings of Machine Learning Research, pages 1456–1465.
PMLR, 2018. 3.2

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448, 2015. 7.1

Raja Giryes, Guillermo Sapiro, and Alexander M Bronstein. Deep neural networks with
random gaussian weights: A universal classification strategy? IEEE Trans. Signal
Processing, 64(13):3444–3457, 2016. 4.4

https://openreview.net/forum?id=S1v4N2l0-

184 Bibliography

Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. In NIPS, 2007a. 2.3.2, 2.4.2

Amir Globerson and Tommi Jaakkola. Convergent propagation algorithms via oriented
trees. In UAI, pages 133–140, 2007b. (document), 3.4.3

Faustino Gomez and Jürgen Schmidhuber. Evolving modular fast-weight networks for
control. In International Conference on Artificial Neural Networks, pages 383–389.
Springer, 2005. 4.4

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convo-
lutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.
4.4

Irving John Good. Some history of the hierarchical bayesian methodology. Trabajos de
estadística y de investigación operativa, 31(1):489, 1980. 6.1

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E
Turner. Decision-theoretic meta-learning: Versatile and efficient amortization of
few-shot learning. arXiv preprint arXiv:1805.09921, 2018. 4.4

Kazushige Goto and Robert Van De Geijn. High-performance implementation of the
level-3 blas. ACM Trans. Math. Softw., 35(1):4:1–4:14, July 2008. ISSN 0098-3500.
8.1

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. CoRR, abs/1706.02677, 2017. 8.4.2

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
gradient-based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930,
2018. 6.1, 6.2.1

Alex Graves. Practical variational inference for neural networks. In Advances in neural
information processing systems, pages 2348–2356, 2011. (document), 4.5.3, 4.5.3

Klaus Greff, Rupesh Kumar Srivastava, and jürgen Schmidhuber. Highway and resid-
ual networks learn unrolled iterative estimation. Proceedings of the International
Conference on Learning Representations, 2017. 8.3.1

Peter Grunwald. A tutorial introduction to the minimum description length principle.
arXiv preprint math/0406077, 2004. 4.5.3

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns.
In Advances In Neural Information Processing Systems, pages 1379–1387, 2016. 4.4

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In International Conference
on Learning Representation (ICLR), 2017a. URL https://openreview.net/pdf?
id=rkpACe1lx. 4.4

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. Proceedings of the International
Conference on Learning Representations, 2017b. 8.1

https://openreview.net/pdf?id=rkpACe1lx
https://openreview.net/pdf?id=rkpACe1lx

Bibliography 185

Benjamin D Haeffele and René Vidal. Global optimality in neural network training. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7331–7339, 2017. 4.1

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a. 4.1, 4.4, 4.5

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In Advances in neural information processing
systems, pages 1135–1143, 2015b. 4.4

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In International
Conference on Learning Representations (ICLR), 2016. 8.1, 8.2.1, 8.2.4

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan
Catanzaro, John Tran, and William J. Dally. DSD: regularizing deep neural net-
works with dense-sparse-dense training flow. International Conference on Learning
Representations, 2017. 8.1

Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
bounds for piecewise linear neural networks. In Conference on Learning Theory, pages
1064–1068, 2017. 4.5.1

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general
network pruning. In Neural Networks, 1993., IEEE International Conference on,
pages 293–299. IEEE, 1993. 4.4

W. Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, 1970. (document)

John Haugeland. Artificial intelligence: The very idea. MIT press, 1989. (document)

T. Hazan and R. Urtasun. A primal-dual message-passing algorithm for approximated
large scale structured prediction. In NIPS, pages 838–846, 2010. 2.4.2, 3.2, 3.3.1, 3.7,
3.A, 3.B.1

Tamir Hazan and Amnon Shashua. Norm-product belief propagation: Primal-dual
message-passing for approximate inference. IEEE Transactions on Information Theory,
56(12):6294–6316, 2010. 2.3.2

Tamir Hazan, Joseph Keshet, and David A McAllester. Direct loss minimization for
structured prediction. In Advances in Neural Information Processing Systems, pages
1594–1602, 2010. 2.4.2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015. 6.1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016a. (document), 4.1, 4.2

186 Bibliography

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016b. 8.1, 8.4, 8.4.2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016c. 7.1, 7.3.2

Tom Heskes. Convexity arguments for efficient minimization of the bethe and kikuchi
free energies. J. Artif. Intell. Res.(JAIR), 26:153–190, 2006. 2.3.1, 2.3.1

G. E. Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009. doi: 10.4249/
scholarpedia.5947. revision #91189. (document)

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015. (document), 4.6, 7.1, 7.3

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the sixth annual
conference on Computational learning theory, pages 5–13. ACM, 1993. (document),
4.1, 4.5, 4.5.1, 4.5.3, 4.5.3

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012. (document), 4.1, 4.2, 4.4, 4.5.4

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory, 1997a. 8.1, 8.3

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42,
1997b. 4.1, 4.5, 4.5.1, 4.5.2

Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction
method of multipliers. Mathematical Programming, 162(1-2):165–199, 2017. 3.6.1,
3.D.2, 3.D.4

Mingyi Hong, Tsung-Hui Chang, Xiangfeng Wang, Meisam Razaviyayn, Shiqian Ma, and
Zhi-Quan Luo. A block successive upper bound minimization method of multipliers
for linearly constrained convex optimization. arXiv preprint arXiv:1401.7079, 2014.
3.2, 3.5

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017a. 4.4

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017b. 8.1, 8.2.4, 8.3, 8.4.2

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely
connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016. 8.3

Bibliography 187

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron
selectivity transfer. arXiv preprint arXiv:1707.01219, 2017. 7.1, 7.2.2, 7.3

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017. 4.4

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016a. 4.4

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR, abs/1602.07360, 2016b. 8.1

Francisco D. Igual, Gregorio Quintana-Ortí, and Robert A. van de Geijn. Level-3 blas on
a GPU : Picking the low hanging fruit. FLAME working note #37. Technical Report
DICC 2009-04-01, Department of Computer Sciences, The University of Texas at
Austin, April 2009. URL http://www.cs.utexas.edu/~flame/pubs/FLAWN37.pdf.
8.1

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word
classifiers: A loss framework for language modeling. CoRR, abs/1611.01462, 2016. 8.1

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In David Blei and Francis Bach, editors,
Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pages 448–456. JMLR Workshop and Conference Proceedings, 2015a. (document),
8.1, 8.4.1

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015b.
4.2, 6.1

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014a. 4.4

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. In Proceedings of the British Machine
Vision Conference (BMVC), 2014b. 8.1, 8.2.1

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex
Graves, David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using
synthetic gradients. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1627–1635. JMLR, 2017. 6.1, 6.3, 6.3

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):
620, 1957. 5.1

Edwin T Jaynes. Probability theory: the logic of science. Washington University St.
Louis, MO, 1996. (document)

http://www.cs.utexas.edu/~flame/pubs/FLAWN37.pdf

188 Bibliography

Harold Jeffreys. Theory of Probability. The Clarendon Press, Oxford, 1939. (document)

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks.
In Advances in Neural Information Processing Systems, pages 667–675, 2016. 4.4

Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened convolutional neural
networks for feedforward acceleration. arXiv preprint arXiv:1412.5474, 2014. 4.4

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of
structural svms. Machine Learning, 77(1):27–59, 2009. 2.4.2, 2.4.2, 2.4.2, 2.4.2

Jason K Johnson and Alan S Willsky. Convex relaxation methods for graphical models:
Lagrangian and maximum entropy approaches. PhD thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering . . . , 2008. 2.3.2

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in neural information processing systems, pages
315–323, 2013. (document)

Michael Jordan. Artificial intelligence: The revolution hasn’t happened yet. https:
//doi.org/10.1162/99608f92.f06c6e61, 2019. (document)

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):
183–233, 1999. (document), 2.3

Joerg Kappes, Bjoern Andres, Fred Hamprecht, Christoph Schnorr, Sebastian Nowozin,
Dhruv Batra, Sungwoong Kim, Bernhard Kausler, Jan Lellmann, Nikos Komodakis,
et al. A comparative study of modern inference techniques for discrete energy mini-
mization problems. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1328–1335, 2013. 2.3.2

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural
Information Processing Systems, pages 586–594, 2016. 4.1

James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal of
the society for Industrial and Applied Mathematics, 8(4):703–712, 1960. 2.4.2

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. arXiv preprint arXiv:1609.04836, 2016. (document), 4.1, 4.5.1,
4.5.2, 4, 4.5.2

John Maynard Keynes. A treatise on probability. Courier Corporation, 1921. (document)

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosen-
baum, Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint
arXiv:1901.05761, 2019. 6.3

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In EMNLP,
2016. 8.1

https://doi.org/10.1162/99608f92.f06c6e61
https://doi.org/10.1162/99608f92.f06c6e61

Bibliography 189

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware
neural language models. In AAAI, 2016. 8.1

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. (document), 4.1, 6.5.2

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 4.5.3, 6.2.2

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems,
pages 2575–2583, 2015. (document), 4.4, 4.5.4, 4.5.4

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In Advances
in Neural Information Processing Systems, pages 4743–4751, 2016. 7.4

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, page 201611835, 2017. 4.6

Daphne Koller, Nir Friedman, and Francis Bach. Probabilistic graphical models: principles
and techniques. MIT press, 2009. (document), 2, 2.2, 2.2, 2.2, 2.2, 2.3

Andrey Kolmogorov. Foundations of the Theory of Probability. Chelsea Publishing
Company, New York, 1933. (document)

Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE
Transactions on Information Theory, 47(5):1902–1914, 2001. 4.5.1

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual decomposition:
Message-passing revisited. In ICCV, pages 1–8, 2007. 2.3.2, 2.4.2, 3.2

Nikos Komodakis. Efficient training for pairwise or higher order CRFs via dual decom-
position. In CVPR, pages 1841–1848, 2011a. 3.2

Nikos Komodakis. Efficient training for pairwise or higher order CRFs via dual decompo-
sition. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on, pages 1841–1848. IEEE, 2011b. URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5995375. 2.4.2

Terry Koo, Amir Globerson, Xavier Carreras Pérez, and Michael Collins. Structured
prediction models via the matrix-tree theorem. In Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 141–150, 2007. 3.C

Rahul G Krishnan, Simon Lacoste-Julien, and David Sontag. Barrier frank-wolfe for
marginal inference. In Advances in Neural Information Processing Systems, pages
532–540, 2015. 2.3.1

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, 2012a. 8.1

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5995375
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5995375

190 Bibliography

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009a. 4.1, 4.5.1

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009b. 7.3.1

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012b. 4.1, 4.2, 4.5.1

Frank R Kschischang, Brendan J Frey, Hans-Andrea Loeliger, et al. Factor graphs and
the sum-product algorithm. IEEE Transactions on information theory, 47(2):498–519,
2001. 2.2

Alp Kucukelbir and David M Blei. Population empirical bayes. arXiv preprint
arXiv:1411.0292, 2014. 5.1, 5.2, 6.1, 6.2.1

Alex Kulesza and Fernando Pereira. Structured learning with approximate inference. In
Advances in Neural Information Processing Systems, pages 785–792, 2007. 3.2

Alex Kulesza and Fernando Pereira. Structured learning with approximate inference. In
Advances in neural information processing systems, pages 785–792, 2008. 2.4.2

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. In
Annales de l’institut Fourier, pages 769–783, 1998. 4.5.2

Alexandre Lacoste, Thomas Boquet, Negar Rostamzadeh, Boris Oreshki, Wonchang
Chung, and David Krueger. Deep prior. arXiv preprint arXiv:1712.05016, 2017. 4.4

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-
coordinate Frank-Wolfe optimization for structural SVMs. In ICML, pages 53–61,
2013a. 3.2, 3.7, 3.B.1

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-
coordinate frank-wolfe optimization for structural svms. In International Conference
on Machine Learning, pages 53–61, 2013b. 2.4.2, 2.4.2, 2.4.2

John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In International
Conference on Machine Learning, 2001. 2.4.2

Guanghui Lan and Renato DC Monteiro. Iteration-complexity of first-order augmented
Lagrangian methods for convex programming. Mathematical Programming, 155(1-2):
511–547, 2016. 3.6.3

Pierre Simon Laplace. Théorie analytique des probabilités. Courcier, 1820. (document)

Neil Lawrence. Machine learning systems design. http://inverseprobability.com/
talks/notes/machine-learning-systems-design.html, 2019. 8.5

Rémi Le Priol, Alexandre Piché, and Simon Lacoste-Julien. Adaptive stochastic dual
coordinate ascent for conditional random fields. 2018. 3.2, 3.B.1

http://inverseprobability.com/talks/notes/machine-learning-systems-design.html
http://inverseprobability.com/talks/notes/machine-learning-systems-design.html

Bibliography 191

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Victor S. Lem-
pitsky. Speeding-up convolutional neural networks using fine-tuned cp-decomposition.
In International Conference on Learning Representations (ICLR), 2016. 8.1, 8.2.1

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in
neural information processing systems, pages 598–605, 1990a. 4.4

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In
D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2,
pages 598–605. Morgan-Kaufmann, 1990b. URL http://papers.nips.cc/paper/
250-optimal-brain-damage.pdf. 8.1

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
(document), 4.2

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015. (document)

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-
learning with differentiable convex optimization. In CVPR, 2019. ??

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the
intrinsic dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.
4.4

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and
artier domain generalization. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5542–5550, 2017a. 6.5.3

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of
neural nets. arXiv preprint arXiv:1712.09913, 2017b. 4.1

Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, and Xiaogang Wang. Finding
Task-Relevant Features for Few-Shot Learning by Category Traversal. In CVPR, 2019.
??, 6.5.1

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly
for few-shot learning. arXiv preprint arXiv:1707.09835, 2017c. 6.1

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017. 7.1, 7.2.2, 7.3

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. QuickeNing: A generic quasi-Newton
algorithm for faster gradient-based optimization. arXiv preprint arXiv:1610.00960,
2017. 3.6.3

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013a. 4.2

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400,
2013b. 8.1

http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

192 Bibliography

Zhouhan Lin, Roland Memisevic, and Kishore Konda. How far can we go without
convolution: Improving fully-connected networks. arXiv preprint arXiv:1511.02580,
2015. 7.1, ??, 7.3.3

Ralph Linsker. An application of the principle of maximum information preservation to
linear systems. In Advances in neural information processing systems, pages 186–194,
1989. 7.2.2

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and
Yi Yang. Learning to propagate labels: Transductive propagation network for few-shot
learning. arXiv preprint arXiv:1805.10002, 2018. 6.1, ??, 6.5.1

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. Learning efficient convolutional networks through network slimming. In
Computer Vision (ICCV), 2017 IEEE International Conference on, pages 2755–2763.
IEEE, 2017. 4.4

Stanislas Łojasiewicz. Sur la géométrie semi-et sous-analytique. Ann. Inst. Fourier, 43
(5):1575–1595, 1993. 4.5.2

B. London, B. Huang, and L. Getoor. The benefits of learning with strongly convex
approximate inference. In ICML, pages 410–418, 2015. 2.3.1, 3.4.3, 3.C

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep
learning. In Advances in Neural Information Processing Systems, pages 3288–3298,
2017. 4.5.3

Haihao Lu and Kenji Kawaguchi. Depth creates no bad local minima. arXiv preprint
arXiv:1702.08580, 2017. 4.1

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical
guidelines for efficient CNN architecture design. In Computer Vision and Pattern
Recognition (CVPR), pages 122–138, 2018. 4.4

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network
models. Neural networks, 10(9):1659–1671, 1997. (document)

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015. 5.1

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as
approximate bayesian inference. The Journal of Machine Learning Research, 18(1):
4873–4907, 2017. 4.5.4

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. Computational Linguistics, 19:
313–330, 1993. 8.4.3

André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, and
Eric P. Xing. AD3: Alternating directions dual decomposition for MAP inference in
graphical models. JMLR, 16:495–545, 2015. 3.2

Bibliography 193

Michael Mathieu, Mikael Henaff, and Yann Lecun. Fast training of convolutional networks
through ffts. In International Conference on Learning Representations (ICLR2014),
2014. 8.1

David A McAllester. Pac-bayesian stochastic model selection. Machine Learning, 51(1):
5–21, 2003. 4.5.3, 4.5.2

John McCarthy. Programs with common sense. RLE and MIT computation center, 1960.
(document)

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. 4.2

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. CoRR, abs/1609.07843, 2016. 8.1, 8.4.3

O. Meshi, A. Jaimovich, A. Globerson, and N. Friedman. Convexifying the bethe free
energy. In UAI, 2009. (document), 2.3.1

O. Meshi, T. Jaakkola, and A. Globerson. Convergence rate analysis of MAP coordinate
minimization algorithms. In NIPS, 2012. 2.3.2

O. Meshi, M. Mahdavi, and A. G. Schwing. Smooth and strong: MAP inference with
linear convergence. In NIPS, pages 298–306, 2015a. 2.3.2, 3.1

O. Meshi, N. Srebro, and T. Hazan. Efficient training of structured SVMs via soft
constraints. In AISTATS, pages 699–707, 2015b. 3.1, 3.2, 3.4.2, 3.7, 3.7.1, 3.B.1

Ofer Meshi, David Sontag, Amir Globerson, and Tommi S Jaakkola. Learning efficiently
with approximate inference via dual losses. In ICML, pages 783–790, 2010. 2.4.2,
2.4.2, 3.2, 3.7, 3.A, 3.B.1

Ofer Meshi, Ben London, Adrian Weller, and David Sontag. Train and test tightness
of lp relaxations in structured prediction. Journal of Machine Learning Research, 20
(13):1–34, 2019. 2.4.2

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The
journal of chemical physics, 21(6):1087–1092, 1953. (document), 2.3

Tom Minka. Discriminative models, not discriminative training. Technical report,
Technical Report MSR-TR-2005-144, Microsoft Research, 2005. 6.2.1

Marvin L Minsky. Logical versus analogical or symbolic versus connectionist or neat
versus scruffy. AI magazine, 12(2):34–34, 1991. 8.5

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural
attentive meta-learner. arXiv preprint arXiv:1707.03141, 2017. (document)

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
2, 2.2, 2.2

194 Bibliography

Rajib Nath, Stanimire Tomov, Tingxing Dong, and Jack Dongarra. Optimizing sym-
metric dense matrix-vector multiplication on gpus. In High Performance Computing,
Networking, Storage and Analysis (SC), page 6, 11 2011. 8.1

Yu. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005. 2.3.2

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer, 2013. 3.D.4

Allen Newell and Herbert Alexander Simon. Gps, a program that simulates human
thought. Technical report, RAND CORP SANTA MONICA CALIF, 1961. (document)

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems,
pages 5947–5956, 2017. 4.5.2

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
Towards understanding the role of over-parametrization in generalization of neural
networks. arXiv preprint arXiv:1805.12076, 2018. 4.1, 3, 4.5.1

Andrew Y Ng and Michael I Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Advances in neural information
processing systems, pages 841–848, 2002. 2.4.2

Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep
cnns. In International Conference on Machine Learning, pages 3727–3736, 2018. 4.1

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018. 6.1, 6.3

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Sensitivity and generalization in neural networks: an empirical study.
arXiv preprint arXiv:1802.08760, 2018. 4.5.1

Steven J. Nowlan and Geoffrey E. Hinton. Simplifying neural networks by soft weight-
sharing. Neural Comput., 4(4):473–493, July 1992. ISSN 0899-7667. doi: 10.1162/
neco.1992.4.4.473. URL http://dx.doi.org/10.1162/neco.1992.4.4.473. 8.1

Sebastian Nowozin, Christoph H Lampert, et al. Structured learning and prediction in
computer vision. Foundations and Trends® in Computer Graphics and Vision, 6(3–4):
185–365, 2011. 2.3.1

Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke.
Coordinate descent converges faster with the Gauss-Southwell rule than random
selection. In ICML, pages 1632–1641, 2015. 3.2

Pavel Okunev and Charles R Johnson. Necessary and sufficient conditions for existence
of the lu factorization of an arbitrary matrix. arXiv preprint math/0506382, 2005. 1

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016. 4.2

http://dx.doi.org/10.1162/neco.1992.4.4.473

Bibliography 195

OpenAI. Openai dota 2 1v1 bot. https://openai.com/the-international/, 2017.
4.1

Boris N. Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task de-
pendent adaptive metric for improved few-shot learning. In Advances in Neural
Information Processing Systems (NIPS), 2018. ??

A Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities. arXiv preprint
arXiv:1701.09175, 2017. 4.2

Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2010. 7.1

Giorgio Parisi. Statistical field theory. Addison-Wesley, 1988. (document), 2.3.1

J. Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning.
In Proc. of Cognitive Science Society (CSS-7), 1985. (document)

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988. (document), 2.3.1

Guillermo Valle Pérez, Ard A Louis, and Chico Q Camargo. Deep learning generalizes
because the parameter-function map is biased towards simple functions. arXiv preprint
arXiv:1805.08522, 2018. (document), 4.1, 4.5, 4.5.1

Carsten Peterson. A mean field theory learning algorithm for neural networks. Complex
systems, 1:995–1019, 1987. (document)

Patrick Pletscher, Cheng Soon Ong, and Joachim M. Buhmann. Spanning tree ap-
proximations for conditional random fields. In D. van Dyk and M. Welling, editors,
Proceedings of the Twelfth International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 408–415, 2009. 2.4.2

Patrick Pletscher, Cheng Soon Ong, and Joachim M. Buhmann. Entropy and margin
maximization for structured output learning. In ECML, pages 83–98, 2010. 3.3.1, 3.A

Lorien Y Pratt. Discriminability-based transfer between neural networks. In Advances
in neural information processing systems, pages 204–211, 1993. 4.6

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recognition by
predicting parameters from activations. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7229–7238, 2018. ??, 6.5.1

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 413–420.
IEEE, 2009. 7.3.2

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On
the expressive power of deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2847–2854. JMLR. org, 2017.
(document)

https://openai.com/the-international/

196 Bibliography

Mani Ranjbar, Tian Lan, Yang Wang, Steven N Robinovitch, Ze-Nian Li, and Greg
Mori. Optimizing nondecomposable loss functions in structured prediction. IEEE
transactions on pattern analysis and machine intelligence, 35(4):911–924, 2013. 2.4.2

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko.
Semi-supervised learning with ladder networks. In Advances in Neural Information
Processing Systems, pages 3546–3554, 2015. 7.2.2

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In European
Conference on Computer Vision, pages 525–542. Springer, 2016. 4.4

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International
Conference on Learning Representations (ICLR), 2018. 6.1, 6.2.1

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.
International Conference on Learning Representation, 2016. (document), 6.1

Pradeep Ravikumar and John Lafferty. Quadratic programming relaxations for met-
ric labeling and markov random field map estimation. In Proceedings of the 23rd
international conference on Machine learning, pages 737–744. ACM, 2006. 2.3.2

Pradeep Ravikumar, Alekh Agarwal, and Martin J Wainwright. Message-passing for
graph-structured linear programs: Proximal methods and rounding schemes. Journal
of Machine Learning Research, 11(Mar):1043–1080, 2010. 2.3.2

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014. 6.2.2

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning,
62(1-2):107–136, 2006. (document)

Peter Richtárik and Martin Takáč. Stochastic reformulations of linear systems: algorithms
and convergence theory. arXiv preprint arXiv:1706.01108, 2017. 2.3.1

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,
1978. (document), 4.1, 4.5, 4.5.3

Herbert Robbins. An empirical bayes approach to statistics. In Herbert Robbins Selected
Papers, pages 41–47. Springer, 1985. 5.1, 5.2, 6.1, 6.2.1

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951. (document)

Herbert Robbins and Sutton Monro. A stochastic approximation method. In Herbert
Robbins Selected Papers, pages 102–109. Springer, 1985. 4.1

Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science
& Business Media, 2013. 2.3

Bibliography 197

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014. 6, 4.6, 7.1, 7.2.2, 7.3

Nir Rosenfeld, Ofer Meshi, Danny Tarlow, and Amir Globerson. Learning structured
models with the auc loss and its generalizations. In Artificial Intelligence and Statistics,
pages 841–849, 2014. 2.4.2

Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with
an exponential convergence rate for finite training sets. In NIPS, pages 2663–2671,
2012. (document), 3.1

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533, 1986. (document), 4.1, 4.2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015. 7.1, 7.3.2

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, 2009. (document)

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization.
In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=BJgklhAcK7. ??

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empir-
ical analysis of the hessian of over-parametrized neural networks. arXiv preprint
arXiv:1706.04454, 2017. 4.1

Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial
intelligence and statistics, pages 448–455, 2009. (document)

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter W. Battaglia, and Timothy P. Lillicrap. A simple neural network
module for relational reasoning. In NIPS, 2017. ??

Victor Garcia Satorras and Joan Bruna. Few-shot learning with graph neural networks.
ArXiv, abs/1711.04043, 2017. ??

B. Savchynskyy, J. Kappes, S. Schmidt, and C Schnörr. A study of Nesterov’s scheme
for Lagrangian decomposition and MAP labeling. In CVPR, pages 1817–1823, 2011.
2.3.2, 3.2

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky,
Brendan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory
of deep learning. In International Conference on Learning Representation (ICLR),
2018. 4.5.4

https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7

198 Bibliography

Thomas Schlegl, Joachim Ofner, and Georg Langs. Unsupervised pre-training across
image domains improves lung tissue classification. In International MICCAI Workshop
on Medical Computer Vision, pages 82–93. Springer, 2014. 7.1

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now
to learn: The meta-meta-meta...-hook. Phd thesis, Technische Universitat Munchen,
Germany, 1987. URL http://www.idsia.ch/~juergen/diploma.html. 6.1

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to
dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992. 4.4

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015. 4.1

Mark Schmidt, Nicolas Le Roux, and Francis R. Bach. Convergence rates of inexact
proximal-gradient methods for convex optimization. In NIPS, pages 1458–1466, 2011.
3.6.3

Mark Schmidt, Reza Babanezhad, Mohamed Ahmed, Aaron Defazio, Ann Clifton,
and Anoop Sarkar. Non-uniform stochastic average gradient method for training
conditional random fields. In AIStats, pages 819–828, 2015. 3.2, 3.B.1

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. In ICML, pages 64–72, 2014. (document)

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. Mathematical Programming, 155(1-2):105–145,
2016. URL http://link.springer.com/article/10.1007/s10107-014-0839-0.
2.3.1, 3.1, 3.5, 3.6.2, 3.E

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos:
Primal estimated sub-gradient solver for svm. Mathematical programming, 127(1):
3–30, 2011. 2.4.2

Claude Elwood Shannon. A mathematical theory of communication. Bell system technical
journal, 27(3):379–423, 1948. 1.2

Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost:
Joint appearance, shape and context modeling for multi-class object recognition and
segmentation. In European conference on computer vision, pages 1–15. Springer, 2006.
3.7.1

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017. 4.1

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015. 8.1, 8.3

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014a. 4.1, 4.2

http://www.idsia.ch/~juergen/diploma.html
http://link.springer.com/article/10.1007/s10107-014-0839-0

Bibliography 199

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014b. 7.1, 7.3.2

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In Advances in Neural Information Processing Systems, pages 4077–4087,
2017. (document), 6.1, ??

Soeren Sonnenburg, Heiko Strathmann, Sergey Lisitsyn, Viktor Gal, Fernando J. Iglesias
García, Wu Lin, Soumyajit De, Chiyuan Zhang, frx, tklein23, Evgeniy Andreev,
JonasBehr, sploving, Parijat Mazumdar, Christian Widmer, Pan Deng / Zora, Gio-
vanni De Toni, Saurabh Mahindre, Abhijeet Kislay, Kevin Hughes, Roman Votyakov,
khalednasr, Sanuj Sharma, Alesis Novik, Abinash Panda, Evangelos Anagnostopoulos,
Liang Pang, Alex Binder, serialhex, and Björn Esser. shogun-toolbox/shogun: Shogun
6.1.0, November 2017. URL https://doi.org/10.5281/zenodo.1067840. 2.4.2

David Sontag and Tommi Jaakkola. Tree block coordinate descent for map in graphical
models. In Artificial Intelligence and Statistics, pages 544–551, 2009. 2.3.2, 2.4.2

David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss. Tight-
ening LP relaxations for MAP using message passing. In UAI, pages 503–510, 2008.
3.2

David Sontag, Amir Globerson, and Tommi Jaakkola. Introduction to dual composition
for inference. In Optimization for Machine Learning. MIT Press, 2011. 2.3.2, 2.4.2

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016. 4.1

Daniel Soudry and Elad Hoffer. Exponentially vanishing sub-optimal local minima in
multilayer neural networks. arXiv preprint arXiv:1702.05777, 2017. 4.1

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,
2014. 4.2

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014. (document)

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep
networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 28, pages
2377–2385. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5850-training-very-deep-networks.pdf. 8.1

Ruslan Leont’evich Stratonovich. Conditional markov processes. In Non-linear transfor-
mations of stochastic processes, pages 427–453. Elsevier, 1965. (document)

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation from
predicting 10,000 classes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1891–1898, 2014. 4.1

https://doi.org/10.5281/zenodo.1067840
http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf
http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf

200 Bibliography

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. Learning to compare: Relation network for few-shot learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
??

Richard Sutton. The bitter lesson. http://incompleteideas.net/IncIdeas/
BitterLesson.html, 2019. 8.5

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015a. 8.1

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1–9, 2015b. 4.1, 4.2

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016. 4.2,
4.5.1

Kui Tang, Nicholas Ruozzi, David Belanger, and Tony Jebara. Bethe learning of graphical
models via MAP decoding. In AIStats, pages 1096–1104, 2016. 3.2, 3.B.1

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In
Proceedings of the 16th International Conference on Neural Information Processing
Systems, pages 25–32. MIT Press, 2003. 2.4.2, 2.4.2

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for
batch normalized deep networks. In International Conference on Machine Learning
(ICML), 2018. (document)

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In
Learning to learn, pages 3–17. Springer, 1998. 6.1

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck
principle. In Information Theory Workshop (ITW), 2015 IEEE, pages 1–5. IEEE,
2015. (document), 4.1, 4.5, 4.5.1, 4.5.4, 4.5.4

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck
method. arXiv preprint physics/0004057, 2000. 4.1, 4.5.4, 4.5.4, 4.5.3, 6.4

Jakub M Tomczak and Max Welling. Vae with a vampprior. arXiv preprint
arXiv:1705.07120, 2017. 5.1

Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep
neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1653–1660, 2014. 7.1

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun.
Large margin methods for structured and interdependent output variables. Journal
of machine learning research, 6(Sep):1453–1484, 2005. 2.4.2, 2.4.2, 2.4.2, 2.4.1

http://incompleteideas.net/IncIdeas/BitterLesson.html
http://incompleteideas.net/IncIdeas/BitterLesson.html

Bibliography 201

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network
compression. In International Conference on Learning Representations (ICLR), 2017a.
4.5.3

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network
compression. International Conference on Learning Representations, 2017b. 8.1

Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang,
Abdelrahman Mohamed, Matthai Philipose, Matt Richardson, and Rich Caruana. Do
deep convolutional nets really need to be deep and convolutional? In ICLR, 2017. 7.1,
??, 7.3.3

Leslie G Valiant. A theory of the learnable. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 436–445. ACM, 1984. (document)

Vladimir Vapnik, Esther Levin, and Yann Le Cun. Measuring the vc-dimension of a
learning machine. Neural computation, 6(5):851–876, 1994. 1

Stylianos I Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. Toolflows for
mapping convolutional neural networks on fpgas: A survey and future directions.
ACM Computing Surveys (CSUR), 51(3):56, 2018. 4.3

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of machine learning research, 11
(Dec):3371–3408, 2010. 7.2.2

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan
Wierstra. Matching networks for one shot learning. In Advances in Neural Information
Processing Systems 29, pages 3630–3638. Curran Associates, Inc., 2016. (document),
6.1, 6.1, 6.4, ??, 6.5.1

M. J. Wainwright. Estimating the wrong graphical model: Benefits in the computation-
limited setting. JMLR, 7(Sep):1829–1859, 2006. 3.8

M. J. Wainwright. Graphical models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008. (document), 2, 2.2,
2.3, 2.3.1, 2.3.2, 2.3.1, 2.3.3, 2.3.4, 2.3.5, 2.3.2, 3.3.1, 3.4.1

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement
on (hyper)trees: Message-passing and linear-programming approaches. PAMI, 2005a.
2.3.2

Martin J Wainwright, Tommi S Jaakkola, and Alan S Willsky. A new class of upper
bounds on the log partition function. IEEE Transactions on Information Theory, 51
(7):2313–2335, 2005b. (document), 2.3.1, 3.4.3, 3.C

A.S. Weigend and B. Huberman. Predicting the future: A connectionist approach.
International Journal of Neural Systems, 1(3):193–209, 1990. 8.1

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona.
Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of
Technology, 2010. 7.1, 7.3.2

202 Bibliography

Max Welling. Intelligence per kilowatt-hour, 2018. URL https://youtu.be/
5DbBQDoBNYc. 4.3, 2

Max Welling. Do we still need models or just more data and compute? https://staff.
fnwi.uva.nl/m.welling/wp-content/uploads/Model-versus-Data-AI-1.pdf,
2019. 8.5

Paul Werbos. Beyond regression:" new tools for prediction and analysis in the behavioral
sciences. Ph. D. dissertation, Harvard University, 1974. 4.2

Tomas Werner. A linear programming approach to max-sum problem: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165–1179, 2007.
2.3.2, 2.4.2

Chenwei Wu, Jiajun Luo, and Jason D Lee. No spurious local minima in a two hidden
unit relu network. In International Conference on Learning Representation Workshop,
2018a. 4.1

Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning:
Perspective of loss landscapes. arXiv preprint arXiv:1706.10239, 2017. (document),
4.1, 3, 4.5.1, 4.5.1, 4.5.2, 4.5.1

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers
in deep neural networks. arXiv preprint arXiv:1802.04680, 2018b. 4.4

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. arXiv preprint arXiv:1611.05431,
2016. 8.2.4, 8.3

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 5987–5995. IEEE, 2017. 4.4

Aolin Xu. Information-theoretic limitations of distributed information processing. PhD
thesis, University of Illinois at Urbana-Champaign, 2016. 6.A, 6.A

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability
of learning algorithms. In Advances in Neural Information Processing Systems, pages
2524–2533, 2017. 6.4

Jiaolong Xu, Liang Xiao, and Antonio M López. Self-supervised domain adaptation for
computer vision tasks. IEEE Access, 7:156694–156706, 2019. ??, 6.5.3

Jun Yang, Rong Yan, and Alexander G Hauptmann. Cross-domain video concept
detection using adaptive svms. In Proceedings of the 15th ACM international conference
on Multimedia, pages 188–197. ACM, 2007. 4.6

Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song,
and Ziyu Wang. Deep fried convnets. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1476–1483, 2015. 4.4

https://youtu.be/5DbBQDoBNYc
https://youtu.be/5DbBQDoBNYc
https://staff.fnwi.uva.nl/m.welling/wp-content/uploads/Model-versus-Data-AI-1.pdf
https://staff.fnwi.uva.nl/m.welling/wp-content/uploads/Model-versus-Data-AI-1.pdf

Bibliography 203

Chen Yanover, Talya Meltzer, and Yair Weiss. Linear programming relaxations and
belief propagation–an empirical study. Journal of Machine Learning Research, 7(Sep):
1887–1907, 2006. 2.3.2

Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding belief propaga-
tion and its generalizations. Exploring artificial intelligence in the new millennium, 8:
236–239, 2003. 2.3.1

Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy
approximations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51(7):2282–2312, 2005. 2.3.1, 3.4.3, 3.C

Ian En-Hsu Yen, Xiangru Huang, Kai Zhong, Ruohan Zhang, Pradeep K Ravikumar,
and Inderjit S Dhillon. Dual decomposed learning with factorwise oracle for structural
SVM of large output domain. In NIPS, pages 5024–5032, 2016. 3.2, 3.7, 3.B.1

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distilla-
tion: Fast optimization, network minimization and transfer learning. In Computer
Vision and Pattern Recognition, pages 4133–4141, 2017. (document), 7.1, 7.2.2

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328, 2014. 4.6

Jiaqian Yu and Matthew B Blaschko. The lovász hinge: A novel convex surrogate for
submodular losses. IEEE transactions on pattern analysis and machine intelligence,
2018. 2.4.2

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016a. 8.1,
8.4

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928, 2016b. (document), 7, 4.6, 7.1, 7.2.2, 7.3, 7.3.1

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016c. (document), 4.1, 4.2, 6.5.1

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regular-
ization, 2014. URL https://arxiv.org/abs/1409.2329. 8.4.3

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016. (document), 4.1, 4.5.1, 4.5.1, 3

Siqi Zhang and Niao He. On the convergence rate of stochastic mirror descent for
nonsmooth nonconvex optimization. arXiv preprint arXiv:1806.04781, 2018. 2

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6848–6856, 2018. 8.1

https://arxiv.org/abs/1409.2329

204 Bibliography

Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan. Theoretical
properties for neural networks with weight matrices of low displacement rank. In
International Conference on Machine Learning, pages 4082–4090, 2017. 8.5

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz.
Compressibility and generalization in large-scale deep learning. arXiv preprint
arXiv:1804.05862, 2018. (document), 4.1, 4.5, 4.5.1, 4.5.3

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of the 20th International
conference on Machine learning (ICML-03), pages 912–919, 2003. 6.1

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 8697–8710, 2018. 8.1

	Acknowledgments
	Abstract
	Résumé
	Contents
	Introduction
	Background: Convex Optimization and Information Theory
	Convex Optimization
	Information Theory
	Rate-distortion theory

	Introduction to Probabilistic Graphical Models
	Introduction
	Models
	Inference
	Marginal inference
	MAP inference

	Learning
	Maximum likelihood estimation of exponential family
	Structured output learning

	Conclusion

	SDCA-Powered Inexact Dual Augmented Lagrangian Method for Fast CRF Learning
	Introduction
	Related Work
	CRF Learning
	CRF as exponential family

	Relaxed Formulations
	Classical local polytope relaxation
	A dual augmented Lagrangian
	Gini entropy surrogate

	Algorithm
	Convergence Analysis
	Conditions for global linear convergence
	Convergence results with SDCA
	Discussion

	Experiments
	Setup
	Results

	Conclusion

	Appendices
	Loss-Augmented CRF
	Derivations of dual, and relaxed primal and dual objectives
	Derivation of the dual objective D()
	Derivation of an extended primal (w,,)
	Interpretation as Moreau-Yosida smoothing
	Duality gaps and representer theorem
	Comparison with State-of-the-Art Structured Learning Methods

	Gini Oriented Tree-Reweighted Entropy
	Proof of Theorem 3.6.1 and associated Corollaries
	Smoothness of d()
	Associated lemmas for Theorem 3.6.1
	Proof of Theorem 3.6.1
	Proofs of Corollary 3.6.2 and Corollary 3.6.3
	Proofs of Corollaries 3.6.4 and Corollary 3.6.5

	Convergence results with SDCA
	Proof of Propositions 3.6.7 and 3.6.8

	Notation summary

	A Survey on Over-Parameterization in Deep Learning: Compression and Generalization
	Introduction
	Deep Network Architectures
	Memory and Energy Issues with Over-Parameterized DNNs
	Model Compression Approaches
	Towards Understanding Generalization via Compression
	The generalization puzzle
	Sharpness: the bridge between compressibility and generalization
	MDL: a lossless-compression-induced supervised learning framework
	Information bottleneck: a lossy-compression-induced supervised learning framework

	Transferring Knowledge from Over-Parameterized Models
	Conclusion

	beta-BNN: A Rate-Distortion Perspective on Bayesian Neural Networks
	Supervised learning via lossy compression
	Approximate Blahut-Arimoto Algorithm
	Experiments
	Discussion

	Empirical Bayes Transductive Meta-Learning with Synthetic Gradients
	Introduction
	Meta-learning with transductive inference
	Empirical Bayes model
	Amortized inference with transduction

	Unrolling exact inference with synthetic gradients
	Generalization analysis of empirical Bayes via the connection to information bottleneck
	Experiments
	Few-shot classification
	Zero-shot regression: spinning lines
	Zero-shot classification: unsupervised multi-source domain adaptation

	Conclusion

	Appendices
	Proofs
	Importance of synthetic gradients
	Varying the size of the query set

	Variational Information Distillation for Knowledge Transfer
	Introduction
	Variational information distillation (VID)
	Algorithm formulation
	Connections to existing works

	Experiments
	Knowledge distillation
	Transfer learning
	Knowledge transfer from CNN to MLP

	Conclusion

	Exploring Weight Symmetry in Deep Neural Networks
	Introduction
	Symmetric reparameterizations
	Motivation
	Soft constraints
	Hard constraints
	Combining with other methods

	Implementations of block symmetry
	Imposing symmetry in convolutional neural networks
	Imposing symmetry in recurrent neural networks

	Experiments
	CIFAR experiments
	ImageNet experiments
	Language modeling

	Conclusion

	Conclusion
	Bibliography

