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Abstract

We revisit the hierarchical Bayes and empirical Bayes formulations for multi-task
learning, which can naturally be applied to meta-learning. The evidence lower
bound of the marginal log-likelihood of empirical Bayes decomposes as a sum
of local KL divergences between the variational posterior and the true posterior
of each task. We derive an amortized variational inference that couples all the
variational posteriors into a meta-model, which consists of a synthetic gradient
network and an initialization network. Our empirical results on the mini-ImageNet
benchmark for episodic few-shot classification significantly outperform previous
state-of-the-art methods.

1 Meta-learning with transductive inference

The goal of meta-learning is to train a meta-model on a collection of tasks, such that it works well on
another disjoint collection of tasks. Suppose that we are given a collection of N tasks for training.
The associated data is denoted by D := {dt = (xt, yt)}Nt=1. In the case of few-shot learning, we
are given in addition a support set dlt for each task. In this section, we revisit the classical empirical
Bayes model for meta-learning. Then, we propose to use a transductive scheme in the variational
inference by constructing the variational posterior as a function of xt.

1.1 Empirical Bayes model

Due to the hierarchical structure among data, it is natural to consider a hierarchical Bayes model for
the marginal likelihood

pf (D) =
∫
ψ

p(D|ψ)p(ψ) =
∫
ψ

[ N∏
t=1

∫
wt

pf (dt|wt)p(wt|ψ)
]
p(ψ). (1)

The generative process is illustrated in Figure 1 (left, in solid arrows): first, a meta-parameter ψ is
sampled from the hyper-prior p(ψ); then, for each task, a task-specific parameter wt is sampled from
the prior p(wt|ψ); finally, the dataset is drawn from the likelihood p(dt|wt)1. In particular, since

1Note that log pf (dt|wt) =
∑n
i=1 log pf (yt,i|xt,i, wt) + constant for a supervised setting.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



different tasks may require different losses, we assume the log-likelihood takes a general form:

log pf (dt|wt) = −
1

n

n∑
i=1

`t
(
ŷt,i(f(xt,i), wt), yt,i

)
, (2)

where `t denotes the task-specific loss, e.g., the cross entropy loss. The first argument in `t is the
prediction, denoted by ŷt,i, for the i-th example, which takes as input the feature representation
f(xt,i) and the task-specific weight wt.

Rather than following a fully Bayesian approach, we leave some random variables to be estimated by
a frequentist approach, e.g., f is a part of the likelihood model for which we use a point estimate. As
such, the posterior inference about these variables will be largely simplified. For the same reason,
we derive the empirical Bayes [Robbins, 1985, Kucukelbir and Blei, 2014], which interprets ψ in a
frequentist way:

pψ,f (D) =
N∏
t=1

pψ(dt) =

N∏
t=1

∫
wt

pf (dt|wt)pψ(wt). (3)

The overall model formulation is the same as the ones considered by Amit and Meir [2018], Grant
et al. [2018], Ravi and Beatson [2018].

1.2 Amortized inference with transduction

Focusing on the empirical Bayes model (3), we derive an evidence lower bound (ELBO) on the
log-likelihood by introducing a variational distribution qθt(wt) for each task with parameter θt:

log pψ,f (D) ≥
N∑
t=1

[
Ewt∼qθt

[
log pf (dt|wt)

]
−DKL

(
qθt(wt)‖pψ(wt)

)]
. (4)

Maximizing the ELBO in (4) with respect to θ1, . . . , θN and ψ is equivalent to

min
ψ

min
θ1,...,θN

1

N

N∑
t=1

DKL

(
qθt(wt) ‖ pf (dt|wt)pψ(wt)

)
, (5)

However, the optimization in (5), as N increases, becomes more and more expensive in terms of the
memory footprint and the computational cost. We therefore wish to bypass this heavy optimization
and to take advantage of the fact that individual KL terms indeed share the same structure. To this end,
instead of introducing N different variational distributions, we consider a commonly parameterized
family of distributions, which is defined implicitly by a deep neural network φ taking as input xt.
Note that we do not include yt as an input because it is not available during meta-testing.

Replacing each qθt by qφ(xt), (5) can be written as

min
ψ

min
φ

1

N

N∑
t=1

DKL

(
qφ(xt)(wt) ‖ pf (dt|wt)pψ(wt)

)
, (6)

which is also known as amortized variational inference in the literature [Kingma and Welling, 2013,
Rezende et al., 2014]. Note that this inference scheme is transductive since for testing each point
in xt we will use the entire xt due to the variational posterior qφ(xt). Alternatively, we can derive
an inductive inference scheme by using the support set dlt to construct a variational posterior qφ(dlt),
since dlt and xt are disjoint. As an example, MAML [Finn et al., 2017] is an inductive method, where
φ(dlt) is realized as θKt , the K-th iterate of the stochastic gradient descent

θk+1
t = θkt + η∇θEwt∼qθkt

[
log p(dlt|wt)

]
with θ0t = φ. (7)

In fact, nothing prevents us to come up with an even better variational posterior qφ(xt,dlt), shown in
dashed arrows in Figure 1 (a), which is again transductive by definition.

In a nutshell, the meta-model includes f, ψ from empirical Bayes and the amortization φ for inference.
To obtain a closed-form KL term in (6), we restrict ourselves to Gaussian models2, such that both
qφ(xt) and pψ are Gaussian distributions with diagonal covariance.

2It is possible to consider more powerful parameterization. For example, implementing the prior pψ(wt) by
PixelCNN [Van den Oord et al., 2016] with lossy compression similar to that of VQ-VAE2 [Razavi et al., 2019].
We leave that for future work.
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(a) Graphical model of EB (b) MAML (c) Our method (SIB)

Figure 1: (a) The generative and inference processes of the empirical Bayes model are depicted in
solid and dashed arrows respectively, where the meta-parameters are denoted by dashed circles due
to the point estimates. A comparison between MAML (7) and our method (SIB) (9) is shown in (b)
and (c). MAML is an inductive method since, for a task t, it first constructs a variational posterior
qθKt as a function of the labeled set dlt, and then test on the unlabeled set xt; while SIB constructs a
better variational posterior as a function of both dlt and xt: it starts from an initialization θ0t (d

l
t), and

then yields θKt by running K synthetic gradient steps on xt.

Algorithm 1 Variational inference with synthetic gradients for empirical Bayes

1: Input: the dataset D; the step size η; the number of inner iterations K; pretrained f .
2: Initialize the meta-models ψ, and φ = (λ, ξ).
3: while not converged do
4: Sample a task t and the associated dataset dt (plus optionally the support set dlt).
5: Compute the initialization θ0t = λ or θ0t = λ(dlt).
6: for k = 1, . . . ,K do
7: Compute θkt via (9).
8: end for
9: Compute wt = wt(θ

K
t , ε) with ε ∼ p(ε).

10: Update ψ ← ψ − η∇ψDKL(qθKt (ψ)‖pψ).
11: Update φ← φ− η∇φDKL(qφ(xt)‖pf · pψ).
12: Optionally, update f ← f + η∇f log pf (dt|wt).
13: end while

2 Variational inference with synthetic gradients

It is however non-trivial to design a network architecture to implement the amortization φ(xt) directly
since xt is itself a dataset. The strategy adopted by neural processes [Garnelo et al., 2018] is to
aggregate the information from all individual examples via a permutation invariant function. However,
as pointed out by Kim et al. [2019], such a strategy tends to underfit xt because the aggregation
does not necessarily attain the most relevant information for identifying the task-specific parameter.
We instead design a neural network φ(xt) to parameterize the optimization process of θt. More
specifically, consider a stochastic gradient descent on θt for optimizing (5) with step size η:

θk+1
t = θkt − η∇θtDKL

(
qθkt (w) ‖ pf (dt|w) · pψ(w)

)
. (8)

We would like to parameterize this optimization dynamics up to the K-th step via φ(xt), such that
qθKt is a good approximation of the optimum qθ?t . It consists of parameterizing

(a) the initialization θ0t and (b) the gradient∇θtDKL(qθt ‖ pf · pψ).

By doing so, θKt becomes a function of φ, ψ and xt3, we therefore realize qφ(xt) as qθKt .

For (a), we opt to either let θ0t = λ to be a global data-independent initialization as in MAML
[Finn et al., 2017] or let θ0t = λ(dlt) with a few supervisions from the support set, where λ can be
implemented by a permutation invariant network described in Gidaris and Komodakis [2018]. In the
second case, the features of the support set will be first averaged in terms of their labels and then
scaled by a learned vector of the same size.

3θKt is also dependent of f . We deliberately remove this dependency to simplify the update of f .
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For (b), the fundamental reason that we parameterize the gradient is because we do not have access
to yt during the meta-testing phase. Note that we are able to follow (8) in meta-training to obtain
qθ?t (wt) ∝ pf (dt|wt)pψ(wt). To make a consistent parameterization in both meta-training and
meta-testing, we thus discard yt when constructing the variational posterior. Regarding the true
gradient, a key observation is that, under a reparameterization wt = wt(θt, ε) with ε ∼ p(ε),

∇θtDKL

(
qθt‖pf · pψ

)
= Eε

[ 1
n

n∑
i=1

∂`t(ŷt,i, yt,i)

∂ŷt,i

∂ŷt,i
∂wt

∂wt(θt, ε)

∂θt

]
+∇θtDKL

(
qθt‖pψ

)
,

where all the terms can be computed without yt except for ∂`t
∂ŷt,i

, thus, we introduce a deep neural
network ξ(ŷt,i) to synthesize it. The idea of synthetic gradients was originally proposed by Jaderberg
et al. [2017] to parallelize the back-propagation. Here, the purpose of ξ(ŷt,i) is to update θt regardless
of the groundtruth labels, which is slightly different from its original purpose. Besides, we do not
introduce an additional loss to force ξ(ŷt,i) to approximate ∂`t

∂ŷt,i
since ξ(ŷt,i) will be learned to yield

a reasonable θKt even without mimicking the true gradient.

To sum up, we have derived a particular implementation of φ(xt) by parameterizing the ideal mean-
field update, namely (8), on the query set dt, such that the meta-model φ includes an initialization
network λ and a synthetic gradient network ξ. Specifically, we have φ(xt) = θKt , the K-th iterate of
the following update:

θk+1
t = θkt − η

[
Eε
[ 1
n

n∑
i=1

ξ(ŷt,i)
∂ŷt,i
∂wt

∂wt(θ
k
t , ε)

∂θt

]
+∇θtDKL

(
qθkt ‖pψ

)]
. (9)

The overall algorithm is depicted in Algorithm 1. A comparison with MAML is shown in Figure 1.
Rather than viewing (9) as an optimization process, it may be more precise to think of it as a
part of the computation graph created in the forward-propagation. As an extension, if we were
deciding to estimate the feature network f in a Bayesian manner, we would have to compute the
gradient of gradient wrt f in the case of MAML. This is super costly from a computational point of
view and needs technical simplifications [Nichol et al., 2018]. By introducing a series of synthetic
gradient networks in a way similar to Jaderberg et al. [2017], the computation will be decoupled into
computations within each layer, and thus becomes more feasible.

3 Few-shot classification on mini-ImageNet

We evaluate our method on the mini-ImageNet dataset, which is an episodic few-shot classification
benchmark proposed by Vinyals et al. [2016]. An episode/task i consists of a query set di and a
support set dsupp

i . When we say an episode i is k-way-n-shot we mean that dsupp
i is formed by first

sampling k categories from a pool of categories; then, for each sampled category, n examples are
drawn and a new label taken from {0, . . . , k − 1} is assigned to these examples. The goal of this
problem is to predict the labels of the query set, which are provided as ground truth during training.

The mini-ImageNet dataset contains 100 different categories with 600 images per category, each of
size 84× 84 pixels. We used the splits by Ravi and Larochelle [2016] that include 64 categories to
form Dtrain, 16 categories to form Dval, and 20 categories to form Dtest.

Following Gidaris and Komodakis [2018], we pretrain the feature network f(·) on Dtrain for standard
64-way classification. We also reuse their feature averaging network as our initialization network
λ(·), which basically averages the feature vectors of all data points from the same category and then
scale each feature dimension differently by a learned coefficient. For the gradient network ξ(·), we
implement a three-layer MLP with hidden-layer size 8k. Finally, for the predictor ŷij(·, wi), we adopt
the cosine-similarity based classifier advocated by Chen et al. [2019] and Gidaris and Komodakis
[2018].

There are two types of evaluation: (a) the standard k-way few-shot classification proposed by Vinyals
et al. [2016] and (b) the learning without forgetting (LwoF) few-shot classification proposed by
Gidaris and Komodakis [2018]. We use the same evaluation code provided by Gidaris and Komodakis
[2018]. For (b), we additionally evaluate the performance on the 64 base categories as a (64+5)-way
classification. In order to classify base categories, we implement pψ as a mixture of Gaussians with 64
components and equal mixing coefficients. The weight of the predictor for classifying base categories
are sampled from pψ . Note that the KL terms can still be computed in closed form.
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For training, we use ADAM with batch size 8 for 60 epochs, where the initial learning rate is 10−3

and dropped by a factor 0.1 at epoch 10, 25, 50. We use the validation set Dval to select the best
performing model and then use it to test on the test-set Dtest.

In Table 1 and Tabel 2 we show a comparison between the state-of-the-art approaches and several
variants of our method (varying T or f(·)) on Dval and Dtest respectively. We observe that our
methods yield a clear performance boost on novel categories, especially when evaluated on the
standard few-shot classification setting. Comparing the cases T = 0 and T = 5, there are clear > 4%
and > 10% improvements with CNN feature networks, which becomes even more significant with
WRN-28-10 features.

Methods 5-way-5-shot 5-way-1-shot
Novel Base Both Novel Base Both

Vinyals et al. [2016] 68.87 ± 0.38% - - 55.53 ± 0.48% - -
Snell et al. [2017] 72.67 ± 0.37% 62.10% 32.70% 54.44 ± 0.48% 52.35% 26.68%
Gidaris and Komodakis [2018] 74.92 ± 0.36% 70.88% 60.50% 58.55 ± 0.50% 70.73% 50.50%

Standard few-shot classification
Ours T = 0 73.18 ± 0.34% - - 55.42 ± 0.44% - -
Ours T = 1 76.09 ± 0.35% - - 60.74 ± 0.50% - -
Ours T = 3 77.53 ± 0.35% - - 65.14 ± 0.54% - -
Ours T = 5 77.74 ± 0.36% - - 66.04 ± 0.59% - -

LwoF few-shot classification
Ours T = 0 73.13 ± 0.34% 70.51% 58.09% 55.22 ± 0.45% 70.01% 47.56%
Ours T = 1 76.69 ± 0.34% 70.40% 62.10% 61.81 ± 0.50% 70.09% 53.53%
Ours T = 3 76.54 ± 0.35% 69.30% 60.91% 63.92 ± 0.54% 70.19% 54.89%
Ours T = 5 76.68 ± 0.35% 70.28% 61.93% 64.39 ± 0.58% 69.88% 54.65%

Table 1: Average classification accuracies on the validation set of mini-ImageNet. The “Novel” columns report
the average 5-way and 1-shot or 5-shot classification accuracies of novel classes (with 95% confidence intervals),
the “Base” and “Both” columns report the classification accuracies of base classes and of both type of classes
respectively. In order to report those results we sampled 2000 tasks each with 15× k test examples of novel
classes and 15× k test examples of base classes.

Methods 5-way-5-shot 5-way-1-shot
Novel Base Both Novel Base Both

Vinyals et al. [2016] 55.30% - - 43.60% - -
Ravi and Larochelle [2016] 60.20 ± 0.71% - - 43.40 ± 0.77% - -
Finn et al. [2017] 63.10 ± 0.92% - - 48.70 ± 1.84% - -
Snell et al. [2017] 68.20 ± 0.66% - - 49.42 ± 0.78% - -
Mishra et al. [2017] 68.88 ± 0.92% - - 55.71 ± 0.99% - -
Gidaris and Komodakis [2018] 73.00 ± 0.64% 70.90% 59.35% 55.95 ± 0.84% 70.72% 49.08%

Standard few-shot classification
Ours T = 0 71.48 ± 0.64% - - 53.62 ± 0.79% - -
Ours T = 1 74.12 ± 0.63% - - 58.74 ± 0.89% - -
Ours T = 3 75.43 ± 0.67% - - 62.59 ± 1.02% - -
Ours T = 5 75.73 ± 0.71% - - 63.26 ± 1.07% - -
Ours T = 3 and f = WRN-28-10 78.92 ± 0.37% - - 67.92 ± 0.55% - -

LwoF few-shot classification
Ours T = 0 70.93 ± 0.63% 69.46% 56.79% 54.43 ± 0.76% 69.30% 47.85%
Ours T = 1 74.42 ± 0.66% 69.28% 60.20% 60.35 ± 0.88% 69.10% 52.52%
Ours T = 3 73.86 ± 0.66% 68.27% 58.71% 62.02 ± 0.93% 69.45% 53.52%
Ours T = 5 74.10 ± 0.67% 69.06% 59.74% 61.82 ± 1.00% 68.80% 52.95%

Table 2: Average classification accuracies on the test set of mini-ImageNet. In order to report those results we
sampled 600 tasks in a similar fashion as for the validation set of mini-ImageNet (see Table 1).
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