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Abstract

We propose an alternative training framework for Bayesian neural networks
(BNNs), which is motivated by viewing the Bayesian model for supervised learning
as an autoencoder for data transmission. Then, a natural objective can be invoked
from the rate-distortion theory. Specifically, we end up minimizing the mutual
information between the weights and the dataset with a constraint that the nega-
tive log-likelihood is smaller than a certain value. The classical Blahut-Arimoto
algorithm for solving this kind of optimization is infeasible due to the intractable
expectations over the weights and the dataset, so we develop a new approximation
to the steps of the Blahut-Arimoto algorithm. Our method exhibits some attractive
properties over the conventional KL-regularized training of BNNs with fixed Gaus-
sian prior: firstly, improved stability during optimization; secondly, a more flexible
prior which can be understood from an empirical Bayes viewpoint.

1 Rate-distortion Perspective on BNNs

Given a sample S := X × Y with inputs X := {(xi)}ni=1 and labels Y := {(yi)}ni=1, consider a
sender who would like to send Y to a receiver. Instead of transmitting the raw data, the sender may
compress the data with an encoder q(w|S) and send the code w or the full encoder distribution. The
receiver can then reconstruct the data by decoding the code w with the predefined decoder p(y | x,w):

ŷi ∼ q(y | xi, S) :=

∫
p(y | xi, w)q(w|S)dw. (1)

This data-transmission view motivates a new learning objective for Bayesian models based on
information theory. Notice that Bayesian inference is a particular case where the true posterior is
used as the encoder. However, the encoder q(w|S) is not necessarily the posterior p(w|S). It comes
from an empirical view of the joint distribution p(S,w):

p(S,w) = q(w|S)p∗(S) with p∗(S) =

n∏
i=1

p∗(xi, yi), (2)

where we denote the “true” distribution of data as p∗(x, y), which is unknown and model independent.
The data-transmission analogy of Bayesian inference offers us a direct way to relate code/weight
complexity with model generalization. To see this, we analyze the limits of the encoder q(w|S). If
we force w to memorize everything in S including the noise, e.g. to have an identity map, we have
to pay a high price for the communication cost. However, the encoding may not be even useful for
another sample since it is too specific for the sample S. On the other hand, if w is independent of S,
then the receiver has no way to decode the message no matter how powerful the decoder is.
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The trade-off between the complexity and the generalization can be formulated as a rate-distortion
trade-off [Cover and Thomas, 2012]. The compression rate is measured by the mutual information
I(w;S)2. The distortion function, denoted by d(w, S), is defined naturally as the negative log-
likelihood. This argument is in line with the Minimum Description Length principle, which says that
the best model among all equally good models is the one that leads to the best compression of the
data. Specifically, the rate-distortion trade-off is expressed as the following optimization problem:

min
q(w|S)∈Q(S)

[
I(w;S) ≡ I(q(w|S))

]
s.t. Ep∗(S)Eq(w|S)d(w, S) ≤ D (3)

I(q(w|S)) := Ep∗(S)Eq(w|S)

[
log

q(w|S)

q(w)

]
, d(w, S) := −

n∑
i=1

log p(yi|xi, w), (4)

whereQ(S) is the set of properly normalized pdfs. A similar rate-distortion analysis for unsupervised
representation learning has been conducted by Alemi et al. [2017].

Note that q(w) =
∑
S p
∗(S)q(w|S) is the aggregated posterior [Makhzani et al., 2015, Tomczak

and Welling, 2017]. This coupling term makes the optimization difficult to solve. We show in the
following lemma how to convert equation (3) to an equivalent but more convenient problem.
Lemma 1 (10.8.1 [Cover and Thomas, 2012]). The mutual information has a variational form:

I(X;Y ) = min
m(y)

DKL(p(x, y)‖p(x)m(y)), where m∗(y) = p(y) =

∫
p(x, y)dx.

By applying Lemma 1 to equation (3), we rewrite the rate-distortion trade-off as:

min
m(w)

min
q(w|S)∈Q(S)

I(q(w|S),m(w)) s.t. Ep∗(S)Eq(w|S)d(w, S) ≤ D (5)

I(q(w|S),m(w)) := Ep∗(S)Eq(w|S)

[
log

q(w|S)

m(w)

]
. (6)

One may see the connection to the empirical Bayes [Robbins, 1985, Kucukelbir and Blei, 2014],
since equation (5) involves optimizing the “posterior” q(w|S) and the “prior” m(w) at the same time.
This perspective links information theory and (empirical) Bayes at a model level rather than at an
inference level.

2 Approximate Blahut-Arimoto Algorithm

The direct optimization of equation (5) is cumbersome, since we need to parameterize a high
dimensional mapping q(w|S). Alternatively, we resort to the classical Blahut-Arimoto algorithm
[Arimoto, 1972, Blahut, 1972]. We first write the Lagrange dual function of equation (5):

F (β) := min
m(w)

min
q(w|S)∈Q(S)

I(q(w|S),m(w)) + β
[
Ep∗(S)Eq(w|S)d(w, S)−D

]
. (7)

The Blahut & Arimoto algorithm for computing F (β) is simply an alternating minimization whose
solution is characterized by the following fixed point equations:

q(w|S) =
m(w) exp(−β d(w, S))∫
m(v) exp(−β d(v, S))dv

and m(w) =
∑
S

p∗(S)q(w|S). (8)

Next, we make two approximations to the above equations:

1. We use a variational approximation q(w|θ) for q(w|S) by solving

θ(S) = arg min
θ

DKL(q(w|θ)‖q(w|S)) (9)

= arg min
θ

DKL(q(w|θ)‖m(w)) + β Eq(w|θ)
[
d(w, S)

]
. (10)

Following Blundell et al. [2015], we parameterize q(w|θ) as a Gaussian distribution.

2Note that the rate is the minimum I(Ŝ, S) over the output Ŝ of the autoencoder. We minimize I(w;S),
since the decoder p(y|x,w) only depends on x and w, and I(Ŝ, S) ≤ I(w;S) by data processing inequality.
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2. We approximate m(w) '
∑
S p
∗(S)q(w|θ(S)) ' 1

K

∑K
k=1 q(w|θ(Bk)) =: m̃(w), where

Bk is a bootstrap sample of size nb drawn from the empirical distribution pS(x, y) =
1
n

∑n
i=1 δ(xi = x)δ(yi = y). Note that we only resample data to create Bk if nb > n.

We call the resulting approach β-BNN. The detailed algorithm is shown in Algorithm 1. Note that
the step for updating q(w|θ) resembles the ELBO derived by Blundell et al. [2015] for vanilla BNNs,
except that the coefficient β is now formally introduced, and instead of setting m(w) to be N (0, I),
m(w) is approximated by a mixture of variational posteriors. It is clear that nb and K determine how
close we follow the classical Blahut-Arimoto steps. However, we do not want to take very large nb
and K, since both steps are approximated. Inspired by this argument, we also consider an online
version, where m̃(w) is updated whenever a new variational posterior is produced.

Algorithm 1 Approximate Blahut-Arimoto Algorithm

1: Input: S (dataset), β (coefficient), K (# mixture components), nb (size of a bootstrap sample).
2: Initialize: Θ = {θ(0)

k = (0, I)}Kk=1; m̃(w) = 1
K

∑
θ∈Θ q(w|θ).

3: for all t = 1, . . . , T do
4: Draw K bootstrap samples {Bk}Kk=1 of size n from pS(x, y).
5: for all k = 1, . . . ,K do
6: θ

(t)
k ← nb SGD steps on the loss of (10) initialized at θ(t−1)

k .
7: Θ = Θ ∪ {θ(t)

k } \ {θ
(t−1)
k }.

8: if do online update or k = K then
9: m̃(w) = 1

K

∑
θ∈Θ q(w|θ).

10: Output: Θ.

3 Experiments

We test β-BNN, online β-BNN and vanilla BNN [Blundell et al., 2015] on the colorful MNIST dataset
[Bulten, 2017], where each image is converted to RGB space and blended with a random background.
We also test a fixed-prior β-BNN, which is a special case: m̃(w) ≡ N (0, I).

For this experiment, T = 100 is sufficient to converge; q(w|θ) and m̃(w) are specified in Section 2;
p(y|x,w) is implemented by a multilayer perceptron (Linear400-ReLU-Linear400-ReLU-Linear10-
Softmax); θ(t)

k is obtained by running SGD over Bk once with batch size 128 and learning rate 10−3.
The comparison is shown in Table 1, where the prediction is arg maxy p(y|x,E[w]). We allocate
10000 points as the validation set, and choose β from 10 candidates ranging uniformly from 10−11

to 10−2. We set K = 5 for the comparison as the performance only increases marginally for K ≥ 5.

Algorithm β∗ Accuracy

Vanilla BNN 1
n 90.05

Fixed-prior β-BNN 10−10 95.86
β-BNN 10−5 96.08
Online β-BNN 10−3 97.12

Table 1: The comparison on colorful MNIST. We
choose nb = 10000,K = 5 for β-BNN. Then, at
each iteration, it goes through the training set once.
We choose nb = 128,K = 5 for online β-BNN,
and increase T to visit the same amount of data.
Note that vanilla BNN corresponds to fixed-prior
β-BNN with β = 1

n and K = 1.
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Figure 1: Testing accuracy over training epochs.

We empirically observe that fixed-prior BNNs suffer from slow convergence due to very large KL
terms (about 106). Thus, we need to choose very small β (about 10−9) to compensate, which will not
be scalable for much larger networks. The convergence comparison is shown in Figure 1, where we
can see that online β-BNN converges to a better local minimum and enjoys a faster convergence.
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