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Motivation



Deep neural networks (DNNs) are over-parameterized

Over-parameterization: redundant parameterization (deeper or wider);

even more parameters than training points.

Why do we use over-parametrized DNNs?

• Empirically good performance.

• Easier to train (Hinton et al., 2012; Denil et al., 2013).
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Figure 1: source: Figure 1 & 2 in Canziani et al. (2016).
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Over-parameterization and the generalization puzzle

Interesting observations on over-parameterized DNNs:

1. High capacity: achieve 0 training errors even with random data.

2. Do not overfit on real datasets as #params increasing.

3. Tend to converge to simple solutions.

Zhang et al. (2016)

Neyshabur et al.

(2018) Wu et al. (2017)
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Over-parameterization and the generalization puzzle

Why gradient based optimizers can learn an over-parameterized

DNN with small generalization error?

• Is it consistent with the bias-variance tradeoff?

test error = estimator variance + squared estimator bias + noise.

• PAC learning with VC-dimension cannot explain this:

generalization error ≤ O
(complexity(HDNN)√

#points

)
,

VC-dimension(HDNN) = O
(
#params · log(#params)

)
The reasons:

• Loose bound: usually #points is smaller than #params.

• Universal bound: it has to hold for all hypotheses in HDNN.
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Need to understand the regularization in deep learning

1. Over-parameterization eliminates bad local minima (Soudry and

Hoffer, 2017; Kawaguchi, 2016; Lu and Kawaguchi, 2017; Li et al.,

2017; Haeffele and Vidal, 2017; Wu et al., 2018).

2. SGD biases towards low-complexity solutions:

• Flat minima conjecture (Keskar et al., 2016; Dinh et al., 2017).

• Information bottleneck (Tishby et al., 2000): minimal sufficient

activation (Tishby and Zaslavsky, 2015), minimal sufficient weights

(Achille and Soatto, 2017).

Keskar et al. (2016) Achille and Soatto (2017)
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Mutual Information



Mutual information: a math concept from Shannon

Mutual information measures statistical dependency

I (X ; Y ) := Ex,y∼p(x,y) log
p(x , y)

p(x)p(y)

= H(X ,Y )− H(X |Y )− H(Y |X )

= H(X )− H(X |Y )

H(X ) = I (X ; X ) = expected amount of information in X
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Mutual information is a functional of distributions

If we decompose the joint distribution as p(x , y) = p(x)q(y |x), then the

mutual information can be writen as a functional of p and q:

I (X ; Y ) ≡ I (p, q) := Ex,y∼p(x,y) log
q(y |x)

q(y)
= ExDKL

(
q(y |x)‖q(y)

)
,

q(y) :=
∑
x

p(x)q(y |x).

Issue: it is computationally difficult since q(y |x) and q(y) are coupled.
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Variational characterization of mutual information

Lemma (Cover and Thomas, 2012, Theorem 10.8.1)

I (X ; Y ) = max
φ(x|y)∈∆

Ex,y∼p(x,y) log
φ(x |y)

p(x)︸ ︷︷ ︸
Ĩ (p,q,φ)

I (X ; Y ) = min
m(y)∈∆

Ex,y∼p(x,y) log
q(y |x)

m(y)︸ ︷︷ ︸
Î (p,q,m)

.
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Learning as lossy compression:

a rate-distortion perspective on

Bayesian neural networks



Bayesian inference

A brief introduction:

• Bayesians describe data Y through the latent variable model

p(Y ,w) = p(Y |w)p(w) = p(w)
∏
i

p(yi |w),

assuming the likelihood p(Y |w) and the prior p(w) are given.

• Bayesians make predictions according to

p(ynew|Y ) =

∫
p(ynew|w)p(w |Y )dw ,

where p(w |Y ) is the posterior.
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Bayesian neural networks

Vanilla Bayesian neural networks (BNNs) by Hinton and Van Camp

(1993); Graves (2011); Blundell et al. (2015):

• Given data S , approximate the posterior p(w |S) by a Gaussian

variational distribution q(w |θ∗) with mean-field form:

θ∗ = arg min
θ

DKL

(
q(w |θ)‖p(w |S)

)
= arg min

θ

∫
q(w |θ) log

q(w |θ)

p(w)p(S |w)
dw

= arg min
θ
−Eq(w |θ)[log p(S |w)] + DKL(q(w |θ)‖p(w)).

• Fix the prior p(w) as Gaussian, Laplace, mixture of Gaussians or

spike-and-slab distribution.
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Rate-distortion tradeoff: a lossy compression framework

To induce a lossy compression of X → X̂ , when p(x) is given:

min
q(x̂|x)∈∆

I (p, q)

s.t.
∑
x,x̂

p(x)q(x̂ |x) d(x , x̂)︸ ︷︷ ︸
D(p,q)

≤ const.

Plugging variational characterization and fixing the Lagrange multiplier β:

min
q(x̂|x)∈∆

min
m(x̂)∈∆

Î (p, q,m) + β D(p, q).

12



An algorithm for rate-distortion tradeoff

The optimization problem of the rate-distortion tradeoff:

min
q(x̂|x)∈∆

min
m(x̂)∈∆

Î (p, q,m) + β D(p, q).

Alternating projection algorithm (aka Blahut-Arimoto algorithm)

Provided an initial qt(x̂ |x) at t = 0. At iteration t > 0, taking the

following steps:

qt(x̂ |x) =
mt(x̂)e−βd(x,x̂)∑
x̂′ mt(x̂ ′)e−βd(x,x̂)

,

mt+1(x̂) =
∑
x

p(x)qt(x̂ |x).

Then, the algorithm converges to a global minimum.
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Rate-distortion perspective on supervised learning

Supervised learning as a lossy compression for the dataset S :

• We define the joint distribution by the graphical model S → w :

p(S ,w) = q(w | S)p∗(S).

• As a comparison, Bayesians use a different decomposition:

P(S ,w) = p(S | w)p(w).

• We make predictions according to

q(y | x ,S) :=

∫
p(y | x ,w)q(w | S)dw .
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Rate-distortion perspective on supervised learning

The lossy-compression induced objective:

min
q(w |S)∈∆

[
I
(
q(w |S), p∗(S)

)]
s.t. Ep∗(S)Eq(w |S)d(w ,S) ≤ D

I
(
q(w |S), p∗(S)

)
≡ I (w ; S) := Ep∗(S)Eq(w |S)

[
log

q(w |S)

q(w)

]
,

d(w ,S) := −
n∑

i=1

log p(yi |xi ,w).

Applying variational characterization, we obtain

I (w ; S) ≡ min
m(w)∈∆

I (q,m) := Ep∗(S)Eq(w |S)

[
log

q(w |S)

m(w)

]
.

Intuition: I (w ; S) is a regularizer, which forces w to contain less

information about a particular S . Less memorization implies better

generalization.
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Approximate Blahut-Arimoto algorithm

1. We use a variational approximation q(w |θ) for q(w |S) by solving

θ(S) = arg min
θ

DKL(q(w |θ)‖q(w |S))

= arg min
θ

DKL(q(w |θ)‖m(w)) + β Eq(w |θ)

[
d(w ,S)

]
.

2. m(w) ≈∑S p∗(S)q(w |θ(S)) ≈ 1
K

∑K
k=1 q(w |θ(Bk)) =: m̃(w),

where Bk is a bootstrap sample of size nb drawn from the empirical

distribution pS(x , y) = 1
n

∑n
i=1 δ(xi = x)δ(yi = y).
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β-BNN

1: Input: S (dataset), β (coefficient), K (#mixture components), nb

(size of a bootstrap sample).

2: Initialize: Θ = {θ(0)
k = (0, I )}Kk=1; m̃(w) = 1

K

∑
θ∈Θ q(w |θ).

3: for all t = 1, . . . ,T do

4: Draw K bootstrap samples {Bk}Kk=1 of size nb from pS(x , y).

5: for all k = 1, . . . ,K do

6: θ
(t)
k ← θ(Bk).

7: Θ = Θ ∪ {θ(t)
k } \ {θ

(t−1)
k }.

8: if do online update or k = K then

9: m̃(w) = 1
K

∑
θ∈Θ q(w |θ).

10: Output: Θ.
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Experiments: colorful MNIST

Baselines:

• Vanilla BNN: Blundell et al. (2015).

• Fixed-prior β-BNN: m̃(w) ≡ N (0, I ).

Algorithm β∗ Accuracy

Vanilla BNN 1
n 90.05

Fixed-prior β-BNN 10−10 95.86

β-BNN 10−5 96.08

Online β-BNN 10−3 97.12
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Experiments: colorful MNIST

Test accuracy over training epochs:
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Is I (w ; S) a good regularizer?

A bias-variance interpretation:

If (w ; S) = Ep∗(S)

∫
dw q(w |S) f

( q(w)

q(w |S)

)
f-mutual-information

= Ep∗(S)

∫
dw q(w |S)

( q(w)

q(w |S)
− 1
)2

if f (t) = (t − 1)2

= Ep∗(S)Vq(w |S)

[ q(w)

q(w |S)

]
since Eq(w |S)

[
q(w)

q(w |S)

]
= 1

A PAC learning interpretation by Xu and Raginsky (2017) if the loss is

σ-subgaussian:

gen-error = Ep∗(S)Eq(w |S)

[
d(w , p∗)− d(w ,S)

]
≤
√

2σ2

n
I (w ; S).

Moreover, I (w ; S) is upper bounded by sharpness:

Flat minimum ⇒ small I (w ; S), but not vice versa.
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The same objective can be used for meta learning

One plausible objective for meta learning is to learn a weight generator

q(w |S) such that it is a good approximation for all posteriors:

min
q

Ep∗(S)DKL

(
q(w |S)‖p(w |S)

)
= −H(p∗(S)) + DKL

(
q(w)‖p(w)

)
+ Ep∗(S)Eq(w |S)

[
d(w ,S)

]
+ I (w ; S).

This is almost identical to the objective for supervised learning.

21



Variational information

distillation for knowledge transfer



Deep learning is data-hungry

Issue: over-parameterized models are often trained with huge data.

• Medical applications is constrained by the number of patients of a

particular disease.

• Semantic segmentation requires pixel-level annotation.

A potential solution: transfer learning.

• Finetuning: initialize with the weights of the source network.

• Teacher-student knowledge transfer by Ba and Caruana (2014);

Hinton et al. (2015).
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Teacher-student knowledge transfer: related work

There is no commonly agreed theory behind knowledge transfer.

Figure 2: FitNet by Romero et al.

(2014).

Figure 3: Attention transfer by

Zagoruyko and Komodakis (2016).
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Mutual information for knowledge transfer

Denote by t and s the activations of the teacher and the student

respectively. Intuitively, I (t; s) is maximized when t = s.
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Variational information distillation (VID)

Knowledge transfer as a regularization:

L = Ltask −
K∑

k=1

λk I (t(k), s(k)),

Recall the variational characterization:

I (p; q) = max
φ(t|s)

Ĩ (p, q, φ)

Instead of searching for all valid φ, we focus on diagonal Gaussians:

− log φ(t|s) =
N∑

n=1

log σn +
(tn − µn(s))2

2σ2
n

+ constant,
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A related problem: channel capacity estimation

Noisy channel decoding theorem

Given a noisy channel from X to Y with transition q(y |x), the channel

capacity is given by

C = max
p(x)∈∆

I (p, q)

= max
p(x)∈∆

max
φ(x|y)∈∆

Ĩ (p, q, φ).
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Experiments: transfer from ImageNet to birds

Dataset: Caltech-UCSD Birds 200.

Networks: teacher (ResNet-34), student (ResNet-18).

data per class ≈29.95 20 10 5

Student 37.22 24.33 12.00 7.09

Finetuned 76.69 71.00 59.25 44.07

LwF 55.18 42.13 26.23 14.27

FitNet 66.63 56.63 46.68 31.04

AT 54.62 41.44 28.90 16.55

NST 55.01 41.87 23.76 15.63

VID 73.25 67.20 56.86 46.21
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Experiments: transfer from ImageNet to indoor scenes

Dataset: MIT-67.

Networks: teacher (ResNet-34), student (VGG-9).

data per class ≈80 50 25 10

Student 53.58 43.96 29.70 15.97

Finetuned 65.97 58.51 51.72 39.63

LwF 60.90 52.01 41.57 27.76

FitNet 70.90 64.70 54.48 40.82

AT 60.90 52.16 42.76 25.60

NST 55.60 46.04 35.22 21.64

VID 72.01 67.01 59.33 45.90
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Relationship between task loss and VID

Two-stage transition: before epoch 51, only −LS increases significantly,

Et,s[log φ(t|s)] barely changes, so does I (t; s); the first stage ends at

epoch 60; at the second stage, I (t; s) slowly increases, which also drives

−LS increasing.
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Experiments: transfer from CNNs to MLPs

Dataset: CIFAR-10.

Networks: teacher (WRN-40-2), student (MLP).

Network MLP-4096 MLP-2048 MLP-1024

Student 70.60 70.78 70.90

KD 70.42 70.53 70.79

FitNet 76.02 74.08 72.91

VID 85.18 83.47 78.57

Urban et al. (2017) 74.32

Lin et al. (2015) 78.62
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Questions?
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