GAN, VAE and Semi-Supervised Learning: Part I

Shell Xu Hu

January 19, 2018

Outline

(1) Introduction
(2) GAN
(3) VAE

Probability Density Estimation

- Problem: $\max _{\theta} \mathbb{E}_{x \sim p_{\text {data }}}\left[\log p_{\theta}(x)\right]$.
- Generative Adversarial Networks (GAN): Define p_{θ} implicitly by a mapping $G: z \rightarrow x$.
- Variational Auto Encoder (VAE): Define p_{θ} explicitly, such as Gaussian, Laplace; Amortize the posterior $p_{\theta}(z \mid x)$ by an inference network $q_{\phi}(z \mid x)$ with additional parameter ϕ.

Generative Adversarial Networks

- The objective of GAN is inspired by logistic regression:

Logistic Regression

$$
\begin{aligned}
\max _{\theta} L(\theta) & :=\sum_{i} y_{i} \log p_{\theta}\left(y_{i} \mid x_{i}\right)+\left(1-y_{i}\right) \log \left(1-p_{\theta}\left(y_{i} \mid x_{i}\right)\right) \\
& =\mathbb{E}_{i: y_{i}=1}\left[\log p_{\theta}\left(y_{i} \mid x_{i}\right)\right]+\mathbb{E}_{i: y_{i}=0}\left[\log \left(1-p_{\theta}\left(y_{i} \mid x_{i}\right)\right)\right]
\end{aligned}
$$

GAN

$$
\begin{aligned}
\min _{G} \max _{D} L(D, G) & :=\mathbb{E}_{X \sim p_{\text {data }}}[\log D(x)]+\mathbb{E}_{x \sim p_{G}}[\log (1-D(x))] \\
& =\mathbb{E}_{x \sim p_{\text {data }}}[\log D(x)]+\mathbb{E}_{z \sim p_{z}}[\log (1-D(G(z)))]
\end{aligned}
$$

Ideal Training Process

GAN Objective

$$
\min _{G} \max _{D} L(D, G):=\mathbb{E}_{X \sim p_{\text {data }}}[\log D(x)]+\mathbb{E}_{X \sim p_{G}}[\log (1-D(x))]
$$

$$
=\mathbb{E}_{x \sim p_{\text {data }}}[\log D(x)]+\mathbb{E}_{z \sim p_{z}}[\log (1-D(G(z)))]
$$

- Update D : Solve inner maximization to optimum: $D^{*}\left(G^{t}\right)$.
- Update $G: G^{t+1} \leftarrow G^{t}-\gamma \nabla_{G} L\left(D^{*}\left(G^{t}\right), G^{t}\right)$.

Ideal Training Process

Proposition

$$
D^{*}(G)(x)=\frac{p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x)+p_{G}(x)}
$$

Proof.

$L(D, \cdot)=\int_{x} f(D(x)) d x$ with $f(q)=a \log q+b \log (1-q)$, where $a, b \in(0,1]$ are constants. Note that

$$
\max _{q \in[0,1]} a \log q+b \log (1-q) \Leftrightarrow q^{*}=\frac{a}{a+b} .
$$

Ideal Training Process

GAN Objective

$$
\min _{G} \max _{D} L(D, G):=\mathbb{E}_{x \sim p_{\text {data }}}[\log D(x)]+\mathbb{E}_{x \sim p_{G}}[\log (1-D(x))]
$$

Given $D^{*}(G)$, we have

$$
\begin{aligned}
& L\left(D^{*}(G), G\right)=\mathbb{E}_{x \sim p_{\text {data }}}\left[\log \frac{p_{\text {data }}(x)}{p_{\text {data }}(x)+p_{G}(x)}\right]+\mathbb{E}_{x \sim p_{G}}\left[\log \frac{p_{G}(x)}{p_{\text {data }}(x)+p_{G}(x)}\right] \\
& =-\log 4+\mathbb{E}_{X \sim p_{\text {data }}}\left[\log \frac{p_{\text {data }}(x)}{\frac{p_{\text {data }}(x)+p_{G}(x)}{2}}\right]+\mathbb{E}_{x \sim p_{G}}\left[\log \frac{p_{G}(x)}{\frac{p_{\text {data }}(x)+p_{G}(x)}{2}}\right] \\
& =-\log 4+D_{\mathrm{KL}}\left(p_{\text {data }} \| \frac{p_{\text {data }}+p_{G}}{2}\right)+D_{\mathrm{KL}}\left(p_{G} \| \frac{p_{\text {data }}+p_{G}}{2}\right) \\
& =-\log 4+D_{\mathrm{JSD}}\left(p_{\text {data }} \| p_{G}\right)
\end{aligned}
$$

Ideal Training Process

GAN Objective

$$
\min _{G} \max _{D} L(D, G):=\mathbb{E}_{x \sim p_{\text {data }}}[\log D(x)]+\mathbb{E}_{X \sim p_{G}}[\log (1-D(x))]
$$

$$
=\mathbb{E}_{x \sim p_{\text {data }}}[\log D(x)]+\mathbb{E}_{z \sim p_{z}}[\log (1-D(G(z)))]
$$

(a)

(b)

(c)

(d)

Actual Training Process

for k steps do

- Sample minibatch of m noise samples $\left\{\boldsymbol{z}^{(1)}, \ldots, \boldsymbol{z}^{(m)}\right\}$ from noise prior $p_{g}(\boldsymbol{z})$.
- Sample minibatch of m examples $\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\right\}$ from data generating distribution $p_{\text {data }}(\boldsymbol{x})$.
\bullet Update the discriminator by ascending its stochastic gradient:

$$
\nabla_{\theta_{d}} \frac{1}{m} \sum_{i=1}^{m}\left[\log D\left(\boldsymbol{x}^{(i)}\right)+\log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)\right]
$$

end for
\bullet Sample minibatch of m noise samples $\left\{\boldsymbol{z}^{(1)}, \ldots, \boldsymbol{z}^{(m)}\right\}$ from noise prior $p_{g}(\boldsymbol{z})$.

- Update the generator by descending its stochastic gradient:

$$
\nabla_{\theta_{g}} \frac{1}{m} \sum_{i=1}^{m} \log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)
$$

Actual Training Process

- Issue: Early in training, when G is poor, $D(G(z))=0$ for almost all z, which means

$$
\log (1-D(G(z))) \equiv 0 \text { saturates. }
$$

- So, instead of

$$
\begin{align*}
& \min _{G} \mathbb{E}_{z \sim p_{z}}[\log (1-D(G(z)))] \tag{1}\\
\longrightarrow & \max _{G} \mathbb{E}_{z \sim p_{z}}[\log D(G(z))] \tag{2}
\end{align*}
$$

Actual Training Process

- An alternative of G update (sum of (1) and (2)):

$$
\begin{equation*}
\max _{G} \mathbb{E}_{z \sim p_{z}}\left[\log \frac{D(G(z))}{1-D(G(z))}\right] \tag{3}
\end{equation*}
$$

- When $D \rightarrow D^{*}(G), D^{*}(G)=\frac{p_{\text {data }}(x)}{p_{\text {data }}(x)+p_{G}(x)}$.

$$
\begin{aligned}
\mathbb{E}_{x \sim p_{G}}\left[\log \frac{D(x)}{1-D(x)}\right] & \simeq \mathbb{E}_{x \sim p_{G}}\left[\log \frac{D^{*}(x)}{1-D^{*}(x)}\right] \\
& =\mathbb{E}_{x \sim p_{G}}\left[\log \frac{p_{\text {data }}(x)}{p_{G}(x)}\right]=-D_{\mathrm{KL}}\left(p_{G} \| p_{\text {data }}\right)
\end{aligned}
$$

- Interpretation:
- D-step makes a good approximation of the density ratio $\frac{p_{\text {data }}(x)}{p_{G}(x)}$.
- G-step minimizes $D_{\mathrm{KL}}\left(p_{\text {data }} \| p_{G}\right)$.

Variational Auto Encoder

VAE Objective

$$
\begin{aligned}
& \log p_{\theta}(x) \geq \mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x, z)-\log q_{\phi}(z \mid x)\right] \\
& \max _{\theta, \phi} L(\theta, \phi):=-D_{\mathrm{KL}}\left(q_{\phi}(z \mid x) \| p(z)\right)+\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]
\end{aligned}
$$

- An example of p_{θ} and q_{ϕ} :
- $p_{\theta}(x \mid z):=\mathcal{N}\left(x ; f(z), \sigma^{2} I\right)$, where $\theta=f$.
- $q_{\phi}(z \mid x):=\mathcal{N}(z ; \mu(x), \Sigma(x))$, where $\phi=(\mu, \Sigma)$.

Variational Auto Encoder

