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The Basics of Bayesian Neural
Networks



Bayesian inference

A brief introduction:

e Bayesians describe data (x,y) through the latent variable model

p(x,y, w) = p(ylx, w)p(x|w)p(w) = p(w) [ ] p(yilxi, w)p(xi|w)

assuming the likelihood p(y|x, w) and the prior p(w) are given.

e Bayesians make predictions according to

p(}/new‘xnew:x7y) = /p(Ynew|XneWa W)p(W|X7Y)dWa

where p(w|x,y) is the posterior.

e Bayesians perform inference by obtaining a variational posterior

g* = argmin divergence(q(w)||p(w|x, y))
q



Mathematical Formulation for Optimization Problem

e Optimization on variational posterior parameters is
minimization on KL divergence written as following:

0" = argminyKL[g(w]0)||P(w|D)] (1)
= argming/q(w|0) Iogl__)(:l]gzg)w)) (2)

= argmingKL[q(w[0)[|P(w)] — Eq(we)[log P(D|w)] (3)

e The paper proposes gradient descent based optimization on
above expression through the methods shown in following
slides, without need for computing closed formed KL terms.

e This relaxes restriction on prior and posterior forms of
selection.
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Mean field approximation

) = 1 a(B) = L(@.8) = > Dra(ai(B:) (@)

SGD affected by choice of posterior g(3) and prior p(a)

e Delta Posterior

L (e, B) = ~log (p(w|a)) + C
e Uniform prior = MLE

e Laplace prior = L1 regularisation

e Gaussian prior = L2 regularisation

Diagonal Gaussian Posterior

e Uniform prior = weight noise

e Gaussian prior = adaptive weight noise
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Defining the Objective Function for Optimization

With optimization addressing minimizing KL divergence as
defined previously, would like to reformulate it into a convenient
choice of objective function that's easy to optimize

e Recap the optimization as parameters minimization on the KL
divergence between variational posterior and actual posterior as
our cost function:

0" = argming. / 9(w|6) log %dw “

Define the objective function f((w),#) as the component being
taken expectation of:

f(w,0) = log g(w|0) — log P(w)P(D|w) (5)

With substituting in this cost function notation, the KL

divergence minimization problem becomes:

0" = argmingEq(w|p)f (w, 0) (6)
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Algorithm Steps for Optimization with Variational Inference on

Weights Posteriors

e With the previous problem reformulation, utilizing Monte
Carlo estimates, the detailed algorithm steps for optimizing
variational posterior parameters are as following:

1. Sample € N(0, /).

2. Let w = i+ log(1 + exp(p)) ® €
(with ® denoting element-wise multiplication)

3. Let 6 = (i, p)
4. Let f(w,0) = log g(w|f) — log P(w)P(D|w).
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Stochastic Optimisation

Common gradient problem

« Don’t know this expectation
in general.

V¢Eq¢(z) [f@(z)] = V/qd)(z f@ (Z dZ « Gradient is of the parameters

of the distribution w.r.t. which
the expectation is taken.

1. Pathwise estimator: Differentiate the function f(z)
2. Score-function estimator: Differentiate the density q(z|x)

Typical problem areas
¢ Sensitivity analysis
¢ Generative models and inference
¢ Reinforcement learning and control
¢ Operations research and inventory control
¢ Monte Carlo simulation
¢ Finance and asset pricing
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Reparameterisation Tricks

Distributions can be expressed as a
transformations of other distributions.

2z~ p(2) Z ~ q¢(z)

Z — 9(67 ¢) €~ p(e) Inversion Method

1|== —

[

pl6) = Ip(=)dz| = |p(e)de
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Pathwise Estimator

(Non-rigorous) Derivation

Vo [2)) = Vi [ as(a [

z=g(e,0); €~ ple)

z~p(z d ) )

4 =V [ oG ate ) . 0)de
] ‘

N V¢Ep(6)[f(g(@v €)] = Ep(e)[vq5f(g(¢: €)]

r=pu+ Rz
' VoEq,(2)[fo(2)] = Ep)[Vafolg(e, ¢))]
Other names When to use
¢ Unconscious statistician -+ Function fis differentiable
¢ Stochastic backpropagation -+ Density q is known with a suitable transform of a
¢ Perturbation analysis simpler base distribution: inverse CDF, location-scale
e Reparameterisation trick transform, or other co-ordinate transform.
¢ Affine-independent inference - Easy to sample from base distribution.
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Log-derivative Trick

Score function is the derivative of a log-likelihood function.

Vg logqy(z) = v;:((bz())

Several useful properties

Expected score JEUMINAVIRTEEMC ) IET
. VA
By Vs logas(al] = [ a() 7228 — 5 [ g~ v1-0

V[V log p(x; 0)] = Z(0) = Ey(u0)[Vo log p(x; 6) Vo log p(x: )|
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Score-function Estimator
Ve olfote)) = 9 [

/ %Z;Vo +(2)(2)dz
— /qo(z)vo log ¢ (2) f(z)dz
=Eqg, () [f(2) Vg log q4(2)] Gradient

VoEy 0 [fo(2)] = Eain [(/(2) ~ )V, logas(o)

Other names When to use
e Likelihood ratio method ¢ Function is not differentiable, not analytical.
* REINFORCE and policy gradients e Distribution g is easy to sample from.
¢ Automated & Black-box inference  Density g is known and differentiable.
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Variational Dropout and the
Local Reparametrization trick [2]



Variational inference (remainder)

e Each weight of the NN is a random variable with a prior distribution
p(w)

e Posterior distribution of the weights p(w|D) cannot be computed,
we need to approximate it with an easier distribution g,(w)

e Finding the best ¢ so that Dx;(qes(w)||p(w|D)) is minimized is
equivalent to maximize

L£(#) = Dre(gs(w)llp(w)) + Y Eq,(mllog pylx, w)] (1)

x,y€D



Local reparametrization trick

e Linear layer: B = AW, with A a (M x K) input matrix, B a
(M x L) output matrix and W a (K x L) weight matrix.

e Posterior approximation on the weights: each wj; is independent and
s (wij) = N (py, 03)

e Minibatch gradient descent, sample M independent weight matrices
W' from g4 and b7 = W'a] |, not efficient

e Sample directly from B with
q5(bmj|A) = N ((Ap)mjs (A20%)mj) (2)

— Sample (M x L) values instead of (M x K x L) and easy
parallel implementation



e Method used for regularization
of deep networks

e At train time: Randomly select
with probability p inputs of
each layer and set them to 0

B=(Aoc&)d

(a) Standard Neural Net

with £ random noise matrix and
0 weight matrix Figure 1: Dropout principle

e At test time: Use all inputs
(p=1)



Dropout as a variational method

Dropout with continuous noise N'(1, ) can be seen as a variational
method with local reparametrization trick:

e Posterior approximation of weights:
W = fOdiag(s)

with gg(s)) = NV (1, ).
e Variational parameter ¢ can be decomposed in two terms:
¢ = (0, ) with # mean of the weights and « variance of dropout.

e Variational lower bound:

L(¢) = —Dra(gs(w)llp(w)) + > Egy(mllog p(ylx, w)]

x,y€D

Can be made independent of 6

Training objective of usual dropout neural network

(3)



Examples in Computer Vision [1]




Classical tasks of compputer vision: semantic segmentation, monocular
depth estimation.

Bayesian DL can be a way to:
e Learn from noisy data

e Learn from small datasets

e Have a confidence score of the predictions



Sources of uncertainties

One can define two sources of uncertainties in computer vision.

e Epistemic:
Uncertainty on which model has generated the data. Given enough
training data, it could be reduced to 0

e Aleatoric:
Noise inherent in the observations (sensor noise, ambiguous class
...). It cannot be explained away with more training data.



It can be modelled with Bayesian Networks
p(y|X?D) = Ep(W\D)p(X‘ya W) (4)

Sample wy..wy from gg(w) and compute px = p(x|y, wi). The mean
and variance of the prediction can be estimated with the mean and
variance of this sequence.



For regression tasks:

e Predict parameters of a distribution instead of single value
e Use minus log likelihood as loss function
e Examples:

e Predict Gaussian distribution with mean f and variance o

I((f,0),f) = f% — log(0)

e Predict Laplacian distribution with mean f and variance o

|f — 7]
g

I((f,0),F) = — — log(o)
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Example semantic segmentation

(a) Input Image (b) Ground Truth (c) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Figure 2: Example of semantic segmentation
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Aleatoric vs Epistemic uncertainties

Train Test Aleatoric | Epistemic Train Test Aleatoric | Epistemic logit
dataset dataset RMS | variance | variance dataset dataset IoU | entropy | variance (x10~%)
Make3D /4 | Make3D | 5.76 0.506 7.73 CamVid/4 | CamVid | 57.2 0.106 1.96
Make3D /2 | Make3D | 4.62 0.521 4.38 CamVid/2 | CamVid | 62.9 0.156 1.66
Make3D Make3D | 3.87 0.485 2.78 CamVid CamVid | 67.5 0.111 1.36
Make3D /4 | NYUV2 - 0.388 15.0 CamVid/4 | NYUv2 - 0.247 10.9
Make3D NYUv2 - 0.461 4.87 CamVid NYUv2 - 0.264 11.8
(a) Regression (b) Classification

Figure 3: Influence of the dataset size and of new dataset on the two

categories of uncertainty measure
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Questions?
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