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The Basics of Bayesian Neural

Networks



Bayesian inference

A brief introduction:

• Bayesians describe data (x, y) through the latent variable model

p(x, y,w) = p(y|x,w)p(x|w)p(w) = p(w)
∏

i

p(yi |xi ,w)p(xi |w)

assuming the likelihood p(y|x,w) and the prior p(w) are given.

• Bayesians make predictions according to

p(ynew|xnew, x, y) =

∫
p(ynew|xnew,w)p(w |x, y)dw ,

where p(w |x, y) is the posterior.

• Bayesians perform inference by obtaining a variational posterior

q∗ = arg min
q

divergence
(
q(w)‖p(w |x, y)

)
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Mathematical Formulation for Optimization Problem

• Optimization on variational posterior parameters is

minimization on KL divergence written as following:

θ∗ = argminθKL[q(w|θ)||P(w|D)] (1)

= argminθ

∫
q(w|θ) log

q(w|θ)

P(wP(D|w))
(2)

= argminθKL[q(w|θ)||P(w)]− Eq(w|θ)[log P(D|w)] (3)

• The paper proposes gradient descent based optimization on

above expression through the methods shown in following

slides, without need for computing closed formed KL terms.

• This relaxes restriction on prior and posterior forms of

selection.
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Mean field approximation

• q(β) =
W∏
i=1

qi (βi ) =⇒ LC (α,β) =
W∑
i
DKL(qi (βi )|p(α))

• sgd affected by choice of posterior q(β) and prior p(α)

• Delta Posterior

• LC (α,β) = −log (p(w|α)) + C

• Uniform prior =⇒ mle

• Laplace prior =⇒ L1 regularisation

• Gaussian prior =⇒ L2 regularisation

• Diagonal Gaussian Posterior

• Uniform prior =⇒ weight noise

• Gaussian prior =⇒ adaptive weight noise
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Defining the Objective Function for Optimization

• With optimization addressing minimizing KL divergence as

defined previously, would like to reformulate it into a convenient

choice of objective function that’s easy to optimize

• Recap the optimization as parameters minimization on the KL

divergence between variational posterior and actual posterior as

our cost function:

θ∗ = argminθ

∫
q(w|θ) log

q(w|θ)

P(w)P(D|w)
dw (4)

• Define the objective function f ((w), θ) as the component being

taken expectation of:

f (w, θ) = log q(w|θ)− log P(w)P(D|w) (5)

• With substituting in this cost function notation, the KL

divergence minimization problem becomes:

θ∗ = argminθEq(w|θ)f (w, θ) (6)
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Algorithm Steps for Optimization with Variational Inference on

Weights Posteriors

• With the previous problem reformulation, utilizing Monte

Carlo estimates, the detailed algorithm steps for optimizing

variational posterior parameters are as following:

1. Sample ε N (0, I ).

2. Let w = µ+ log(1 + exp(ρ))� ε
(with � denoting element-wise multiplication)

3. Let θ = (µ, ρ)

4. Let f (w, θ) = log q(w|θ)− log P(w)P(D|w).
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Stochastic Optimisation

Shakir Mohamed

Common gradient problem

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

1. Pathwise estimator: Differentiate the function f(z)

2. Score-function estimator: Differentiate the density q(z|x)

• Don’t know this expectation 
in general.


• Gradient is of the parameters 
of the distribution w.r.t. which 
the expectation is taken.

Typical problem areas

• Sensitivity analysis 

• Generative models and inference

• Reinforcement learning and control

• Operations research and inventory control

• Monte Carlo simulation

• Finance and asset pricing



Reparameterisation Tricks

Shakir Mohamed

Samplers, one-liners and change-of-variables

p(z) =

����
d✏

dz

���� p(✏) =) |p(z)dz| = |p(✏)d✏|

μ

R

r✓

x = µ + Rz

z ⇠ p(z) z ⇠ q�(z)

z = g(✏,�) ✏ ⇠ p(✏)

Distributions can be expressed as a 
transformations of other distributions.



Pathwise Estimator

Shakir Mohamed

(Non-rigorous) Derivation

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz= Ep(✏)[r�f✓(g(✏,�))]

Other names

• Unconscious statistician

• Stochastic backpropagation

• Perturbation analysis

• Reparameterisation trick

• Affine-independent inference

When to use

• Function f is differentiable

• Density q is known with a suitable transform of a 

simpler base distribution: inverse CDF, location-scale 
transform, or other co-ordinate transform.


• Easy to sample from base distribution.

μ

R

r✓

x = µ + Rz

z ⇠ p(z)

Change of variables

r�Eq(z)[f(z)] = r�

Z
q�(z)f(z)dz Known transformation

= r�Ep(✏)[f(g(�, ✏)] = Ep(✏)[r�f(g(�, ✏)] Inv fn Thm



Log-derivative Trick

Shakir Mohamed

r� log q�(z) =
r�q�(z)

q�(z)

Score function is the derivative of a log-likelihood function.

Several useful properties

Eq(z) [r� log q�(z)] = 0Expected score

Fisher Information

↞Show this



Score-function Estimator

Shakir Mohamed

Other names

• Likelihood ratio method

• REINFORCE and policy gradients

• Automated & Black-box inference

When to use

• Function is not differentiable, not analytical.

• Distribution q is easy to sample from.

• Density q is known and differentiable.

= Eq�(z) [(f(z)� c)r� log q�(z)]

=

Z
q�(z)

q�(z)
r�q�(z)f(z)dz Identity

=

Z
q�(z)r� log q�(z)f(z)dz Log-deriv

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz Leibnitz integral rule

= Eq�(z) [f(z)r� log q�(z)] Gradient

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz
Control

Variate



Variational Dropout and the

Local Reparametrization trick [2]



Variational inference (remainder)

• Each weight of the NN is a random variable with a prior distribution

p(w)

• Posterior distribution of the weights p(w |D) cannot be computed,

we need to approximate it with an easier distribution qφ(w)

• Finding the best φ so that DKL(qφ(w)||p(w |D)) is minimized is

equivalent to maximize

L(φ) = DKL(qφ(w)||p(w)) +
∑

x,y∈D
Eqφ(w)[log p(y |x ,w)] (1)
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Local reparametrization trick

• Linear layer: B = AW , with A a (M × K ) input matrix, B a

(M × L) output matrix and W a (K × L) weight matrix.

• Posterior approximation on the weights: each wij is independent and

qφ(wij) = N (µij , σ
2
ij)

• Minibatch gradient descent, sample M independent weight matrices

W i from qφ and bTi = W iaTi , not efficient

• Sample directly from B with

qφ(bmj |A) = N ((Aµ)mj , (A
2σ2)mj) (2)

−→ Sample (M × L) values instead of (M × K × L) and easy

parallel implementation

4



Dropout

• Method used for regularization

of deep networks

• At train time: Randomly select

with probability p inputs of

each layer and set them to 0

B = (A ◦ ξ)θ

with ξ random noise matrix and

θ weight matrix

• At test time: Use all inputs

(p = 1)

Figure 1: Dropout principle
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Dropout as a variational method

Dropout with continuous noise N (1, α) can be seen as a variational

method with local reparametrization trick:

• Posterior approximation of weights:

W = θdiag(s)

with qφ(si ) = N (1, α).

• Variational parameter φ can be decomposed in two terms:

φ = (θ, α) with θ mean of the weights and α variance of dropout.

• Variational lower bound:

L(φ) = −DKL(qφ(w)||p(w))︸ ︷︷ ︸
Can be made independent of θ

+
∑

x,y∈D
Eqφ(w)[log p(y |x ,w)]

︸ ︷︷ ︸
Training objective of usual dropout neural network

(3)
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Examples in Computer Vision [1]



Motivations

Classical tasks of compputer vision: semantic segmentation, monocular

depth estimation.

Bayesian DL can be a way to:

• Learn from noisy data

• Learn from small datasets

• Have a confidence score of the predictions
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Sources of uncertainties

One can define two sources of uncertainties in computer vision.

• Epistemic:

Uncertainty on which model has generated the data. Given enough

training data, it could be reduced to 0

• Aleatoric:

Noise inherent in the observations (sensor noise, ambiguous class

...). It cannot be explained away with more training data.
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Epistemic

It can be modelled with Bayesian Networks

p(y |x ,D) = Ep(w |D)p(x |y ,w) (4)

Sample w1..wN from qφ(w) and compute pk = p(x |y ,wk). The mean

and variance of the prediction can be estimated with the mean and

variance of this sequence.
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Aleatoric

For regression tasks:

• Predict parameters of a distribution instead of single value

• Use minus log likelihood as loss function

• Examples:

• Predict Gaussian distribution with mean f and variance σ

l((f , σ), f̂ ) = −||f − f̂ ||2

2σ2
− log(σ)

• Predict Laplacian distribution with mean f and variance σ

l((f , σ), f̂ ) = −|f − f̂ |
σ

− log(σ)
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Example semantic segmentation

Figure 2: Example of semantic segmentation
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Aleatoric vs Epistemic uncertainties

Figure 3: Influence of the dataset size and of new dataset on the two

categories of uncertainty measure
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Questions?
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