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Probabilistic machine learning



The probabilistic pipeline

Knowledge Data

Probabilistic model 
assumptions Inference & learning

Prediction with 
uncertainty quantification
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Probabilistic graphical models (PGMs)

How do we model a random vector x = (x1, . . . , xn) when n is large?

• Semantic segmentation: x ∈ {1, . . . ,K}n.

• Human pose estimation: x ∈ Rn.

PGMs are special distributions where conditional independence (CI)

assumptions are made to enable a factorization according to a graph G :

p(x) ∝
∏
a∈A

ψa(xa),

where A is a set of cliques in G .

4



Latent variable models (LVMs)

What if we have no idea how to make CI assumptions among x?

• A LVM introduces a latent variable z with joint distribution

p(x , z),

which is the underpinning of deep generative models and Bayesian

neural networks.

• Inference about z based on the data is through posterior

p(z |x) =
p(x , z)

p(x)
=

p(x |z)p(z)

p(z)
.

• Since p(x) =

∫
p(x , z)dz is intractable, we appeal to approximate

posterior inference.
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Variational inference for LVMs

• VI casts inference as optimization.

• Posit a variational family of distributions of the form

q(z ; ν).

• Fit the variational posterior q(z ; ν) to be close to the true posterior

p(z |x) in terms of some divergence measure (e.g. Kullback-Leibler).
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Variational inference for LVMs: derivation

To compute log p(x) = log

∫
p(x , z)dz , the key idea to find an evidence

lower bound (ELBO) by Jensen’s inequality:

log

∫
p(x , z)dz = log

∫
q(z)

p(x , z)

q(z)
dz

≥
∫

q(z) log
p(x , z)

q(z)
dz =: ELBO

= −DKL

(
q(z)‖p(z |x)

)
+ log p(x).

Thus, we have the classical equivalence

max
q

ELBO ⇔ min
q

DKL

(
q(z)‖p(z |x)

)
.
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Case study: Bayesian models

• Frequentist’s parametric model: p(ytest|xtest;wtrain).

• Bayesian’s non-parametric model:

p(ytest|xtest,Dtrain) =

∫
W

p(ytest|xtest,w)p(w |Dtrain)dw

.

• Compute the posterior via Bayes rule?

p(w |Dtrain) =
p(Dtrain|w)p(w)

p(Dtrain)
,

given the likelihood p(Dtrain|w) and the prior p(w).
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Case study: Bayesian models

• In general, unless a conjugate prior is considered for the likelihood,

the posterior cannot be computed in closed form.

• Alternatively, we do variational inference:

qtrain = arg min
q∈Q

DKL

(
q(w) ‖ p(w |Dtrain)

)
and make prediction through

q(ytest|xtest,Dtrain) =

∫
W

p(ytest|xtest,w) qtrain(w)dw
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Information theoretical machine

learning



Preliminary: Mutual information

Mutual information is used to measure statistical dependence

I (X ;Y ) := Ex,y∼p(x,y) log
p(x , y)

p(x)p(y)

= H(X ,Y )− H(X |Y )− H(Y |X )

= H(X )− H(X |Y )

H(X ) = I (X ;X ) = expected amount of information in X
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Mutual information: another variational tool

If we know the distribution of X and the joint distribution with

decomposition p(x , y) = p(x)q(y |x), then we can use mutual information

to adjust q(y) by either minimizing or maximizing

I (X ;Y ) ≡ Iq(X ,Y ) := Ex,y∼p(x,y) log
q(y |x)

q(y)

= Ep(x)DKL

(
q(y |x)‖q(y)

)
.

Note that the mutual information is a functional of p and q.
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Variational characterization of mutual information

Computational issue: I (X ;Y ) is intractable!

Solution: using variational techniques to derive bounds:

Lemma [Cover and Thomas, 2012, Theorem 10.8.1]

I (X ;Y ) = Ex,y∼p(x,y) log
p(x |y)

p(x)
= max
φ(x|y)

Ex,y∼p(x,y) log
φ(x |y)

p(x)︸ ︷︷ ︸
p(x|y)→φ(x|y)

I (X ;Y ) = Ex,y∼p(x,y) log
q(y |x)

q(y)
= min

m(y)
Ex,y∼p(x,y) log

q(y |x)

m(y)︸ ︷︷ ︸
q(y)→m(y)

.
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Rate-distortion (RD) tradeoff and information bottleneck

For a lossy compression of X → X̂ , when p(x) is given:

min Rate min
q(x̂|x)

Iq(X ; X̂ )

s.t. Distortion ≤ const s.t.
∑
x,x̂

p(x)q(x̂ |x) d(x , x̂)︸ ︷︷ ︸
Dq(X ,X̂ )

≤ const.

The information bottleneck (IB) [Tishby et al., 2000] is a extension for

supervised learning where the distortion is defined in terms of the

relevance wrt the label Y :

d(x , x̂) = DKL

(
p(y |x)‖p(y |x̂)

)
.

A more common form reads as (assuming p(y |x) is fixed)

min
q(x̂|x)

Iq(X ; X̂ )− β Iq(Y ; X̂ ).
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Rate-distortion based Bayesian inference

For a dataset S , consider a latent variable model defined by

Generative process : P(S ,w) = p(S | w)p(w).

The variational posterior q(w |S) induces

Inference process : q(S ,w) = q(w | S)q∗(S).

The Bayesian version of the information bottleneck (BIB) [Achille

and Soatto, 2017] can be derived from the RD tradeoff [Hu et al., 2018]:

min
q(w |S)

Iq(w ;S) + β Hq,p(S |w)

where Hq,p(S |w) := Ep∗(S)Eq(w |S)d(w ,S)

and d(w ,S) := − log p(S | w).

This is an alternative objective for variational inference.
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Empirical Bayes transductive

meta-learning with synthetic

gradients



Meta-learning: a framework for small-data problems

Definition (meta-learning)

The problem is to solve rapidly a new task after learning several other

similar tasks, where the dataset is a two-level hierarchy – dataset of

datasets, one for each task. Meta-learning is sometimes called learning

to learn [Schmidhuber, 1987, Thrun and Pratt, 1998].

Applications:

• Learning to do gradient descent [Andrychowicz et al., 2016].

• Learning to classify unseen categories [Vinyals et al., 2016].

• Learning to generalize across domains [Li et al., 2017].
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An example: few-shot classification

Few-shot learning [Vinyals et al., 2016]:

Support set Query set

d l
t := {(x l

t,i , y
l
t,i )}n

l

i=1 xt := {xt,i}ni=1 yt = {yt,i}ni=1

Labeled data Unlabeled data

Training X X X

Testing X X 7

N-way-K -shot setup:
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From hierarchical Bayes (HB) to empirical Bayes (EB)

Consider N training tasks with associated data D := {dt := (xt , yt)}Nt=1:

HB→ EB : pf (D)→ pψ,f (D) =

∫
ψ

[ N∏
t=1

∫
wt

pf (dt |wt)p(wt |ψ)
]
p(ψ),

}

} dt

dl
t

N
n

nl

xl
t,i

yl
t,i

xt,iyt,i

wt

ϕ

ψ

f

Generative

Inference
La

be
le
d

U
nl
ab

el
ed

log pf (dt |wt)

=
n∑

i=1

log pf (yt,i |xt,i ,wt) + log p(xt,i |wt)

= −
n∑

i=1

`t
(
ŷt,i (f (xt,i ),wt), yt,i

)
+ const
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Variational inference for empirical Bayes

We derive an ELBO on the log-likelihood by introducing a variational

distribution qθt (wt) for each task with parameter θt :

log pψ,f (D) ≥
N∑
t=1

[
Ewt∼qθt

[
log pf (dt |wt)

]
− DKL

(
qθt (wt)‖pψ(wt)

)]
.

Maximizing the ELBO with respect to θ1, . . . , θN and ψ is equivalent to

min
θ1,...,θN

N∑
t=1

DKL

(
qθt (wt)

∥∥∥ pψ,f (wt |dt)
)

18



Amortized inference [Kingma and Welling, 2013] with transduc-

tion

Exact VI : min
θ1,...,θN

N∑
t=1

DKL

(
qθt (wt)

∥∥∥ pψ,f (wt |dt)
)

For scalable inference, we introduce a neural network φ to output θt .

There are two choices to do the amortization:

Inductive AVI : min
φ

N∑
t=1

DKL

(
qφ(d l

t )(wt)
∥∥∥ pψ,f (wt |dt)

)
Transductive AVI : min

φ

N∑
t=1

DKL

(
qφ(d l

t ,xt)
(wt)

∥∥∥ pψ,f (wt |dt)
)
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Why transduction?

Motivation: to make use of the unlabeled data (i.e., xt).

(b) MAML Finn et al. [2017] (c) Our method

• MAML is an inductive method – only use the labeled data d l
t to

construct a Dirac delta variational posterior;

• We construct a better variational posterior as a function of both

labeled data d l
t and unlabeled data xt .
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Unrolling exact inference with synthetic gradient

How do we implement the amortization network φ(xt , d
l
t )?

The best is through the exact inference (only doable in training)

φ(d l
t , xt) = arg min

θt

DKL

(
qθt (wt)

∥∥∥ pψ,f (wt |dt)
)

However, we don’t have access to yt in testing tasks. Instead, we unroll

θk+1
t = θkt − η∇θtDKL

(
qθkt (w) ‖ pψ,f (w |dt)

)
.

up to the K -th step by parameterizing

• the initialization θ0
t ;

• the gradient ∇θtDKL

(
qθkt (w) ‖ pψ,f (w |dt)

)
.
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Unrolling exact inference with synthetic gradient

Key observation: yt only appears in ∂`t term.

∇θtDKL

(
qθt‖pψ,f

)
= Eε

[ n∑
i=1

∂`t(ŷt,i , yt,i )

∂ŷt,i

∂ŷt,i
∂wt

∂wt(θt , ε)

∂θt

]
+∇θtDKL

(
qθt‖pψ

)
.

By replacing
∂`t(ŷt,i , yt,i )

∂ŷt,i
≈ ξ(ŷt,i ), we can perform synthetic gradient

descent without using yt :

θk+1
t = θkt − η

[
Eε
[ n∑
i=1

ξ(ŷt,i )
∂ŷt,i
∂wt

∂wt(θ
k
t , ε)

∂θt

]
+∇θtDKL

(
qθkt ‖pψ

)]
.

The idea of synthetic gradient was originally proposed by Jaderberg et al.

[2017] for asynchronous forward and backward passes.

22



Computation graph of our method

Classifier 
forward 

SGDθ0(dl
t ) SGD SGDθ1

t

ϕ(dl
t , xt) ≡ θK

t

xt f(xt)
f

xl
t f(xl

t )

  init

yl
t

θk
t

f(xt) . detach()
̂yt   grad

Classifier 
backward ∇θ DKL ξ( ̂yt) ≈

∂ℓt

∂ ̂yt

ξ

λ

Classifier 
forward ̂yt

Loss 
yt

KL

ℓt

DKL(qθK
t
∥pψ)

+

Synthetic  
gradient  
module

23



Variational EM algorithm

1: while not converged do

2: Sample a task t and its data: dt , d
l
t .

3: Compute the initialization θ0
t = λ(d l

t ).

4: %========= E-step =========

5: for k = 1, . . . ,K do

θk+1
t = θkt − η synthetic gradient.

6: %========= M-step =========

7: Update φ← φ− η∇φDKL(qφ(xt ,d l
t )‖pf · pψ).

8: Update ψ ← ψ − η∇ψDKL(qθKt (ψ)‖pψ).

9: Optionally, update f ← f + η∇f log pf (dt |wt).
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Abstract form of empirical Bayes

Note that

log pψ,f (w1, . . . ,wN ,D) =
N∑
t=1

log pf (dt |wt) + log pψ(wt)

is equal to the log-density of N iid samples drawn from

p(w , d , t) ≡ pψ,f (w , d , t) = pf (d |w , t)pψ(w)q(t)

if q(t) is uniform. Correspondingly, there is another decomposition

q(w , d , t) ≡ qφ(w , d , t) = qφ(w |d , t)q(d |t)q(t)

induced by the abstract variational posterior qφ(w |d , t). When N →∞,

we have an abstract form of EB:

Eq(t)Eq(d|t)

[
Eq(w |d,t)

[
− log p(d |w , t)

]
+ DKL

(
q(w |d , t)‖p(w)

)]
.

25



Empirical Bayes is related to information bottleneck

EB can be understood as matching the following processes:

Inference process : q(w , d , t) = q(t)q(d |t)q(w | d , t)

Generative process : p(w , d , t) = p(d |w , t)p(w)q(t)

Theorem

Eq(t)Eq(d|t)

[
Eq(w |d,t)

[
− log p(d |w , t)

]
+ DKL

(
q(w |d , t)‖p(w)

)]
≥ Iq(w ; d |t) + Hq,p(d |w , t).

In light of this connection, we call our method synthetic information

bottleneck (SIB).
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Few-shot classification experiments

• MiniImageNet [Vinyals et al., 2016] contains 100 classes, split into

64 training classes, 16 validation classes and 20 testing classes,

where each class consists of 600 image-label pairs and each image is

of size 84×84.

• CIFAR-FS [Bertinetto et al., 2018] is created by dividing the

original CIFAR-100 into 64 training classes, 16 validation classes and

20 testing classes; each image is of size 32×32.
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Few-shot classification experiments

MiniImageNet, 5-way CIFAR-FS, 5-way

Method Backbone 1-shot 5-shot 1-shot 5-shot

Matching Net [Vinyals et al., 2016] Conv-4-64 44.2% 57% – –

MAML [Finn et al., 2017] Conv-4-64 48.7±1.8% 63.1±0.9% 58.9±1.9% 71.5±1.0%

Prototypical Net [Snell et al., 2017] Conv-4-64 49.4±0.8% 68.2±0.7% 55.5±0.7% 72.0±0.6%

Relation Net [Sung et al., 2018] Conv-4-64 50.4±0.8% 65.3±0.7% 55.0±1.0% 69.3±0.8%

GNN [Satorras and Bruna, 2017] Conv-4-64 50.3% 66.4% 61.9% 75.3%

R2-D2 [Bertinetto et al., 2018] Conv-4-64 49.5±0.2% 65.4±0.2% 62.3±0.2% 77.4±0.2%

TPN [Liu et al., 2018] Conv-4-64 55.5% 69.9% – –

Gidaris et al. [2019] Conv-4-64 54.8±0.4% 71.9±0.3% 63.5±0.3% 79.8±0.2%

SIB K=0 (Pre-trained feature) Conv-4-64 50.0±0.4% 67.0±0.4% 59.2±0.5% 75.4±0.4%

SIB η=1e-3, K=3 Conv-4-64 58.0±0.6% 70.7±0.4% 68.7±0.6% 77.1±0.4%

SIB η=1e-3, K=0 Conv-4-128 53.62 ± 0.79% 71.48 ± 0.64% – –

SIB η=1e-3, K=1 Conv-4-128 58.74 ± 0.89% 74.12 ± 0.63% – –

SIB η=1e-3, K=3 Conv-4-128 62.59 ± 1.02% 75.43 ± 0.67% – –

SIB η=1e-3, K=5 Conv-4-128 63.26 ± 1.07% 75.73 ± 0.71% – –

TADAM [Oreshkin et al., 2018] ResNet-12 58.5±0.3% 76.7±0.3% – –

SNAIL [Santoro et al., 2017] ResNet-12 55.7±1.0% 68.9±0.9% – –

MetaOptNet-RR [Lee et al., 2019] ResNet-12 61.4±0.6% 77.9±0.5% 72.6±0.7% 84.3±0.5%

MetaOptNet-SVM [Lee et al., 2019] ResNet-12 62.6±0.6% 78.6±0.5% 72.0±0.7% 84.2±0.5%

CTM [Li et al., 2019] ResNet-18 64.1±0.8% 80.5±0.1% – –

Qiao et al. [2018] WRN-28-10 59.6±0.4% 73.7±0.2% – –

LEO [Rusu et al., 2019] WRN-28-10 61.8±0.1% 77.6±0.1% – –

Gidaris et al. [2019] WRN-28-10 62.9±0.5% 79.9±0.3% 73.6±0.3% 86.1±0.2%

SIB K=0 (Pre-trained feature) WRN-28-10 60.6±0.4% 77.5±0.3% 70.0±0.5% 83.5±0.4%

SIB η=1e-3, K=1 WRN-28-10 67.3±0.5% 78.2±0.3% 76.8±0.5% 84.9±0.4%

SIB η=1e-3, K=3 WRN-28-10 69.6±0.6 % 78.9±0.4% 78.4±0.6% 85.3±0.4%

SIB η=1e-3, K=5 WRN-28-10 70.0±0.6% 78.9±0.4% 80.0±0.6% 85.3±0.4%
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Variational information

distillation for knowledge transfer



Deep learning is data-hungry

Issue: over-parameterized neural networks are often trained with huge

data, which is infeasible for certain applications, such as

• Medical applications is constrained by the number of patients of a

particular disease.

• Semantic segmentation requires pixel-level annotation.

A potential solution: transfer learning.

• Finetuning: initialize with the weights of the source network.

• Teacher-student knowledge transfer by Ba and Caruana [2014],

Hinton et al. [2015].
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Prior work on teacher-student knowledge transfer

It works well empirically but there is no commonly agreed theory

behind this framework.

Figure 1: FitNet by Romero et al.

[2014].

Figure 2: Attention transfer by

Zagoruyko and Komodakis [2016].
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Mutual information for knowledge transfer

Denote by t and s the activations of the teacher and the student

respectively. Intuitively, I (t; s) is maximized when t = s. The idea is to

add a term to the information bottleneck principle [Tishby et al., 2000]:

min I (x ; s) + β H(y |s)− λ I (t; s).

31



Variational information distillation (VID)

Knowledge transfer as a regularizer with SGD:

L = Implicit regularization + Cross-entropy−
K∑

k=1

λk I (t(k), s(k)),

Recall the variational characterization:

I (t; s) = H(t)− H(t|s)

= H(t) + Et,s [log p(t|s)]

= H(t) + Et,s [log q(t|s)] + Es [DKL(p(t|s)||q(t|s))]

≥ H(t) + Et,s [log q(t|s)],

Instead of searching for all valid q, we focus on diagonal Gaussians:

− log q(t|s) =
N∑

n=1

log σn +
(tn − µn(s))2

2σ2
n

+ constant,
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Experiments: transfer from ImageNet to bird data

Dataset: Caltech-UCSD Birds 200.

Networks: teacher (ResNet-34), student (ResNet-18).

data per class ≈29.95 20 10 5

Student 37.22 24.33 12.00 7.09

Finetuned 76.69 71.00 59.25 44.07

LwF 55.18 42.13 26.23 14.27

FitNet 66.63 56.63 46.68 31.04

AT 54.62 41.44 28.90 16.55

NST 55.01 41.87 23.76 15.63

VID 73.25 67.20 56.86 46.21
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Experiments: transfer from ImageNet to indoor-scene data

Dataset: MIT-67.

Networks: teacher (ResNet-34), student (VGG-9).

data per class ≈80 50 25 10

Student 53.58 43.96 29.70 15.97

Finetuned 65.97 58.51 51.72 39.63

LwF 60.90 52.01 41.57 27.76

FitNet 70.90 64.70 54.48 40.82

AT 60.90 52.16 42.76 25.60

NST 55.60 46.04 35.22 21.64

VID 72.01 67.01 59.33 45.90
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Experiments: transfer from CNNs to MLPs

Dataset: CIFAR-10.

Networks: teacher (WRN-40-2), student (MLP).

Network MLP-4096 MLP-2048 MLP-1024

Student 70.60 70.78 70.90

KD 70.42 70.53 70.79

FitNet 76.02 74.08 72.91

VID 85.18 83.47 78.57

Urban et al. [2017] 74.32

Lin et al. [2015] 78.62
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Conclusion

• Meta-learning

• Formulated transductive meta-learning with empirical Bayes model.

• Implemented transductive amortized inference using synthetic

gradient descent.

• Achieved state-of-the-art results on few-shot learning benchmarks.

• Derived the connection to Bayesian information bottleneck.

• Transfer learning

• Proposed a teacher-student knowledge transfer framework inspired

by information bottleneck.

• Achieved state-of-the-art results on transfer learning benchmarks.

• Empirically verified knowledge transfer between CNN and MLP.
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Thank you for your attention!
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