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Introduction



The development of convolutional neural networks

CNNs have become the workhorses for computer vision.

e Many techniques, such as residual connections, batch normalization,
have been developed to improve the performance on ImageNet.

e The overall trend was making CNNs deeper and wider.
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Figure 1: CNNs are over-parameterized. Source: Canziani et al. [2016].



Over-parameterization and the generalization puzzle

Interesting observations on over-parameterized neural networks —
the beginning of theoretical research on deep learning;:

e Achieve zero training error even on damaged data.
e Generalize well on real data as #params increasing.

e Favor simple solutions.
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Explanation I: Over-parameterization eliminates bad local min-

ima and mitigates non-convexity

This explanation was suggested by Soudry and Hoffer [2017], Kawaguchi
[2016], Lu and Kawaguchi [2017], Li et al. [2017], Haeffele and Vidal
[2017], Wu et al. [2018].

(a) k=1, 5.80%

(e) k=1,1331% (f) k=2,1026% (g) k=4, 9.69% (h) k =8, 8.70%

Figure 2: With residual connections (top) and without (bottom). k = width
factor, test error on CIFAR-10. Source: Li et al. [2017]



Explanation Il: SGD biases towards low-complexity solutions

e Flat minima conjecture [Keskar et al., 2016, Berglund, 2011].

e Information bottleneck [Tishby et al., 2000, Tishby and Zaslavsky,
2015, Achille and Soatto, 2017]:

min I(X; T)=BI(Y;T)

I(T:Y)

" Flat Minimum Sharp Minimum ) : ‘1xm

Keskar et al. [2016] Tishby and Zaslavsky [2015]



Preliminary: Mutual information

Mutual information is used to measure statistical dependency

P\X, Yy
I(X;Y) = Ey yp(x,y) log M

H(X,Y) - H(X|Y) -
H(X) — H(X|Y)
I(X;

X) = expected amount of information in X

H(X)

H(X) H(Y)

HX,Y)



Mutual information — a distribution manipulating tool

How do we make use of mutual information in machine
learning/deep learning?

If we know the distribution of X and the joint distribution of X and Y
decomposes as p(x,y) = p(x)q(y|x), then we can employ mutual
information to adjust the distribution of Y:

q(y|x)

H(X;Y)=1L,6(X,Y) =E,woix.y) log
( ) P,q( ) y~p(x,y) a(y)

= E,Dxr (q(y1x)]lq(y))

Note that the mutual information is a functional of p and q.



Variational characterization of mutual information

Computational issue: /(X;Y) is intractable since g(y|x) and
q(y) == >, p(x)q(y|x) are coupled.

Solution: using variational techniques to derive bounds:

Lemma [Cover and Thomas, 2012, Theorem 10.8.1]

p(xly) o(xly)
I(X;Y)=E, ,~pxy) |0 = max E ,5(x.y) |0
( ) y~p(x,y) 108 p(x) sixly) Y p(x.y) 08 p(x)
p(x|y)—=o(x|y)
q(y|x) : q(ylx)
I(X; Y) = Ey e lo = minE, x| .
( ) y~p(x,y) 108 a(y) e p(x.y) m(y)

q(y)—m(y)



Variational information
distillation for knowledge transfer



Deep learning is data-hungry

Issue: over-parameterized neural networks are often trained with huge
data, which is infeasible for certain applications, such as

e Medical applications is constrained by the number of patients of a
particular disease.

e Semantic segmentation requires pixel-level annotation.
A potential solution: transfer learning.

e Finetuning: initialize with the weights of the source network.

o Teacher-student knowledge transfer by Ba and Caruana [2014],
Hinton et al. [2015].
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Prior work on teacher-student knowledge transfer

It works well empirically but there is no commonly agreed theory
behind this framework.
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Figure 3: FitNet by Romero et al. Figure 4: Attention transfer by
[2014]. Zagoruyko and Komodakis [2016].
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Mutual information for knowledge transfer

Denote by t and s the activations of the teacher and the student
respectively. Intuitively, /(t;s) is maximized when t = s.

Teacher ‘@ Student
[2] {s2]
7N\
[t [ (v s s1 ]
knowledge —/
estimation

| to I_E_'_' '_'_'_'_'_'_'_'_'_'_'_'_'_';I sO

max /(t; s) is inspired by information bottleneck [Tishby et al., 2000]:

min /(x;s) — I(y;s).



Variational information distillation (VID)

Knowledge transfer as a regularization:

K
L= Lok — > Xl (), s0),
k=1

Recall the variational characterization:

I(t;s) = H(t) — H(t|s)
= H(t) + Eq s[log p(t|s)]
= H(t) + Eq s[log q(t|s)] + Es[DxL(p(t|s)||q(t[s))]
> H(t) + Eq s[log g(t|s)],

Instead of searching for all valid g, we focus on diagonal Gaussians:

|o | 7(5))2
gq(t|s) Z ogo, + 52 -+ constant,
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Experiments: transfer from ImageNet to bird data

Dataset: Caltech-UCSD Birds 200.
Networks: teacher (ResNet-34), student (ResNet-18).

data per class ~29.95 20 10 5

Student 3722 2433 12.00 7.09
Finetuned 76.69 71.00 59.25 44.07
LwF 55.18 4213 26.23 14.27
FitNet 66.63 56.63 46.68 31.04
AT 54.62 4144 2890 16.55
NST 55.01 4187 2376 15.63

VID 73.25 67.20 56.86 46.21
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Experiments: transfer from ImageNet to indoor-scene data

Dataset: MIT-67.
Networks: teacher (ResNet-34), student (VGG-9).

data per class =80 50 25 10

Student 53.58 4396 29.70 15.97
Finetuned 65.97 5851 51.72 39.63
LwF 60.90 52.01 4157 27.76
FitNet 7090 64.70 5448 40.82
AT 60.90 5216 42.76 25.60
NST 55.60 46.04 3522 21.64

VID 72.01 67.01 59.33 45.90
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Relationship between task loss and VID

Two-stage transition:

e Before epoch 51, only L,k = Ls decreases significantly,

E¢ s[log g(t|s)] barely changes, so does I(t;s);

e The first stage ends at epoch 60. At the second stage, /(t;s) slowly

increases, which also drives —Ls increasing.

Epoch 0051 Epoch 0060 Epoch 0199
P
b
- - -~ -
g,
|
group 0 group 0 group 0
group 1 group 1 group 1
group 2 group 2 group 2
DR DR IR
Ey[logq(t]s)] Esllogq(t]s)] Ey[logq(t|s)]
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Experiments: transfer from CNNs to MLPs

Dataset: CIFAR-10.
Networks: teacher (WRN-40-2), student (MLP).

Network | MLP-4096 ~MLP-2048 MLP-1024
Student 70.60 70.78 70.90
KD 70.42 70.53 70.79
FitNet 76.02 74.08 72.91
VID 85.18 83.47 78.57
Urban et al. [2017] 74.32

Lin et al. [2015] 78.62
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ined discriminator

Initializing from a pretrained discriminator will break the GAN balance.
But a pretrained discriminator can be used to improve a poor
discriminator (student).

Inception scores

—— WGAN-VID
— WGAN

Inception score

0 20000 40000 60000 80000 100000 120000 140000 160000
Number of minibatches (size=64)
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Empirical Bayes transductive
meta-Learning with synthetic
gradients




Meta-learning: a framework for small-data problems

Definition: the problem of solving rapidly a new task after learning
several other similar tasks, where the dataset is a two-level hierarchy —

dataset of datasets, one for each task.

Meta-learning is sometimes called learning to learn.

Few-shot setting of meta-learning [Vinyals et al., 2016]

A task t, in meta-testing, consists of an unlabeled set x; := {x¢,;i}7_;

and a labeled set d := {(th,;a}’t/,;)}fiy and the goal is to predict
ye = {yt.i}"_; corresponding to x;. In meta-training, y; is provided as

ground truth.
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An example: few-shot classification

N-way-K-shot setup:

Training task 1 Training task2 - - - Test task 1

Support set Support set Support set
k i g AR
i £ - .
& =
T _—— L SR
- — A B
@ EhE

Query set Query set

T8 DEe TEE
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Empirical Bayes model for meta-learning

Consider a hierarchical Bayes model for the marginal likelihood

() = [ piolw)ete) = [ | H / pr(delwo)p(welt)|p(w). (1)

The empirical Bayes [Robbins, 1985, Kucukelbir and Blei, 2014], which
interprets v in a frequentist way:

2

N
pus(D) = [[ o) =[] / (@l )
t=1 Wt

=1

log pf(dt‘Wt)

n

= log pr(ye,ilxe.i» we) + log p(xe,i| we)
i=1

@j}g
©6

i .
I . - Z;gt()’nf(f(xt,i)’ We), e,i) + const,
N i=
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Preliminary: why Bayesian?

ecision boundary for sampled w

e Frequentist's parametric model: p(Yiest|Xtest; Wirain)-
e Bayesian's non-parametric model:

p(Ytest|XtestaDtrain) = / p(}/test‘xtesta W)P(W"Dtrain)dw
w

e How to compute the posterior?

p(Dtrain|W)p(W)
p(Dtrain) '
from the likelihood p(Dyrain|w) and the prior p(w).

By Bayes' rule: P(W|Dyrain) =

22



Preliminary: how practical is Bayesian?

e Unless a conjugate prior is considered for the likelihood, the
posterior cannot be computed in closed form.

e Alternatively, we do approximate Bayesian inference:
IDn = arg max DKL(Q(W) | P(W|Dtrain))-
qeQ
and make prediction through
q(ytest‘xtesh Dtrain) = / p(ytestlxtest7 W) th,ain(W)dW
w

e Most existing works, e.g., Blundell et al. [2015], opt to parameterize
g(w) as a Gaussian distribution — learning mean and variance.
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Motivation: can we do better than classical Bayesian?

What can be improved?
e Global vs. local: is it necessary to condition on the entire train-set?
p(W|Dtrain) VS. p(W|Dcontext)

We will approximate p(w|Dcontext) in the variational inference of
empirical Bayes.

e Domain shift: to predict yiest, do we use

p(W|Dtrain) or p(W‘Xtest;Dtrain) or p(W|Dtest)?

24



Transduction: a dose to domain shift

e Inductive learning — p(w|Dyain): we first train a model on Dyyain,
and then test it on Dy, One testing example at a time.

e Transductive learning — p(w|Xiest; Dirain): We are allowed to see all
testing examples, i.e., Xiest, before making predictions.

e Cheating — p(w|Drest) :p

25



Amortized inference with transduction

We derive an evidence lower bound (ELBO) on the log-likelihood by
introducing a variational distribution gy, (w;) for each task with
parameter 0;:

Mz

(B, [108 pr(delwe)] — D (qo, (we) pu(we))]
3)

Maximizing the ELBO in equation (3) with respect to 61,...,60y and ¢ is
equivalent to

log py, (D
t=1

md!n 1m|7nlV i Z D (%(Wt) | Pf(dt|Wt)Pw(Wt)) (4)

Replacing each qg, by gy, q41y), €quation (4) can be written as

N
]
minmin >~ Dkt (@y(uay (w0) | pr(cklme)py(we) ). (5)
t=1
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Variational inference with synthetic gradients

How do we parameterize ¢(x;,d!)?

If we were able to have access to the groundtruth y;, we would perform a
stochastic gradient descent on 6; for optimizing equation (4):

06 = 05 — 1 Vo, D (qog (W) | pr(cklw) - pu(w)).  (6)

Instead, we parameterize this optimization dynamics up to the K-th step
via ¢(x¢, d!), such that gyx is a good approximation of the optimum qp; .
It consists of parameterizing

e the initialization ¢°

o the gradient Vg, Dk (qo, || pr - py)-
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Variational inference with synthetic gradients

Key observation: y; only appears in 0¢; term.

1 o agt(}?t.iayt.i) Oyt aWt(9t7€)
D cpy ) = E | — E : : :
vet G (thpr pl/) ) |:n i 8}71—’,' 8Wt 89t

+ Vg, DL (ClerHPw),

under a reparameterization w; = w;(0;, €) with € ~ p(e).

Now, we can perform synthetic gradient descent:

ot = ot = 1> 60 G 245 ) 4 9D (gl
i=1

(7)
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Variational inference with synthetic gradients: computation

graph

ok Classifier
forward

Sf(x) . detach()

" ot
Classifier B g el
VoDg1, backward 20 a9,
init 1 _’BOA'E_’QI @—
Tl (j](drl’ X,) = 9K —PDKL(%V(HP )
Vi |
Xl — — f(x})

Classifier Vi y
X, —» — fl(x) forward 3, > _'n
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Variational inference with synthetic gradients: algorithm

1: Input: the dataset D; the step size 7; the number of inner iterations
K; pretrained f.

2: Initialize the meta-models ¢, and ¢ = (A, €).

3: while not converged do

Sample a task t and the associated dataset d; (plus optionally
the support set d!).
. Compute the initialization §9 = X or 9 = \(d!).
6: fork=1,....,K do

et — gk ) {]Ee E En:f(y“)g{//tv: Bwta(z:;,e)} + Vo, DxL (q95||P¢)]
i—1

Compute w; = w; (0K, €) with € ~ p(e).
Update ¢ < ¢ — nvaKL(%b(w)”Pw)-
g Update ¢ < ¢ — 1 Vg Dri(Gy(x,, a1 |l PF - Py)-
10: Optionally, update f < f + 1 V¢ log pr(de|wy).
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Empirical Bayes is equivalent to information bottleneck

An abstract view of the model (controllable pieces are marked in red):

Inference :

Generative :

N

df

Theorem

;?Vlvf; Eqt)Eq(ale) [DKL (g(w|d,t) || p(wld, t))}

= lg(w;d|t) = Blgp(w;d|t) with 5 =1,

where I, and I, , are mutual information and
cross mutual information respectively.

In light of this connection, we call our method synthetic information

bottleneck (SIB).
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Mini-ImageNet experiments

MinilmageNet, 5-way CIFAR-FS, 5-way
Method Backbone 1-shot 5-shot 1-shot 5-shot
Matching Net [Vinyals et al., 2016] Conv-4-64 44.2% 57% = =
MAML [Finn et al., 2017] Conv-4-64 48.7+£1.8% 63.1+£0.9% 58.9+1.9%  71.5+1.0%
Prototypical Net [Snell et al., 2017] Conv-4-64 49.440.8% 68.2:+0.7% 55.5+0.7%  72.040.6%
Relation Net [Sung et al., 2018] Conv-4-64 50.440.8% 65.3+£0.7% 55.0+1.0%  69.3+0.8%
GNN [Satorras and Bruna, 2017] Conv-4-64 50.3% 66.4% 61.9% 75.3%
R2-D2 [Bertinetto et al., 2018] Conv-4-64 49.5+£0.2% 65.4+0.2% 62.3+0.2%  77.4+£0.2%
TPN [Liu et al., 2018] Conv-4-64 55.5% 69.9% = =
Gidaris et al. [2019] Conv-4-64 54.84+0.4% 71.9+£0.3% 63.5+£0.3%  79.8+0.2%
SIB K=0 (Pre-trained feature) Conv-4-64 50.0+0.4% 67.0+0.4% 59.2+0.5%  75.440.4%
SIB n=1e-3, K=3 Conv-4-64 58.0+0.6% 70.7+0.4% 68.74+0.6%  77.1+£0.4%
SIB n=1e-3, K=0 Conv-4-128 53.62 £ 0.79% 71.48 £ 0.64% - -
SIB n=1e-3, K=1 Conv-4-128  58.74 + 0.89%  74.12 + 0.63% = =
SIB n=1e-3, K=3 Conv-4-128  62.59 & 1.02%  75.43 & 0.67% = =
SIB n=1e-3, K=5 Conv-4-128  63.26 + 1.07%  75.73 + 0.71% = =
TADAM [Oreshkin et al., 2018] ResNet-12 58.54+0.3% 76.7+£0.3% = =
SNAIL [Santoro et al., 2017] ResNet-12 55.7+1.0% 68.9+0.9% = =
MetaOptNet-RR [Lee et al., 2019] ResNet-12 61.410.6% 77.9+£0.5% 72.6+0.7%  84.3+0.5%
MetaOptNet-SVM [Lee et al., 2019] ResNet-12 62.6+0.6% 78.6+0.5% 72.0+£0.7%  84.240.5%
CTM [Li et al., 2019] ResNet-18 64.1+0.8% 80.5+£0.1% = =
Qiao et al. [2018] WRN-28-10 59.6+0.4% 73.74£0.2% = -
LEO [Rusu et al., 2019] WRN-28-10 61.84+0.1% 77.6+£0.1% = =
Gidaris et al. [2019] WRN-28-10 62.9+0.5% 79.9+0.3% 73.6+0.3%  86.1+0.2%
SIB K=0 (Pre-trained feature) WRN-28-10 60.6+0.4% 77.5+£0.3% 70.0+£0.5%  83.5+0.4%
SIB n=1e-3, K=1 WRN-28-10 67.3+£0.5% 78.2+0.3% 76.8+0.5%  84.9+0.4%
SIB n=1e-3, K=3 WRN-28-10 69.6+0.6 % 78.9+0.4% 78.4+0.6%  85.3+0.4%
SIB n=1e-3, K=5 WRN-28-10 70.0+0.6% 78.9+0.4% 80.0+0.6%  85.340.4%
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Questions?
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