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Main idea

We propose an alternative training
framework for Bayesian neural networks
(BNNs), which is motivated by viewing
the latent variable model for supervised
learning as an autoencoder for data
transmission. Then, a natural objective
can be invoked from the rate-distortion
theory leading to an iterative update on
the “prior” and the “posterior”.

Background: lossy compression

Goal: determine the minimal number of
bits, denoted by R, to encode a signal X ,
such that the distortion of X yielded by
the autoencoding does not exceed D.

Autoencoder

Lossless compression ⇒ BNN

This connection with lossless compression
was established by [1] using the minimum
description length (MDL) and the bits
back argument for noisy weights:

min
q

KL(q‖prior) + Eq[data misfit],

which is considered as vanilla BNN when
the variational posterior q is specified as
diagonal Gaussian due to [2].

Model uncertainty: Bayesian vs. “Frequentist”

Bayesians describe data S = {(xi, yi)}ni=1 through generative
decomposition of the latent variable model

p(S,w) = p(w)p(S|w) = p(w)
∏
i

p(yi|xi, wy)p(xi|wx).

From a “Frequentist” viewpoint, we assume there exists a
“true” data distribution p∗(S), which is different from the
marginal likelihood p(S). Besides, we introduce an encoder
q(w|S), which is also different from the posterior p(w|S).
Then, the latent variable model of the data decomposes as

p(S,w) = p∗(S)q(w|S).

Rate-distortion theory for supervised learning

Taking p(y|x,w) as the decoder, q(w|S) as the encoder, we
have a full view of supervised learning with model uncertainty:

Predictive : q(y | x, S) =

∫
p(y | x,w)q(w|S) dw.

The weight w can be interpreted as the code of the autoencoder.
Inspired by rate-distortion, we have a compression-error tradeoff:

min
q(w|S)∈∆

[
I(w;S) ≡ Ep∗(S)Eq(w|S) log

q(w|S)∑
S p
∗(S)q(w|S)

]
s.t. Ep∗(S)Eq(w|S)

[
d(w, S) ≡ −

n∑
i=1

log p(yi|xi, w)
]
≤ D

Applying variational characterization [3], we obtain

I(w;S) ≡ min
m(w)∈∆

Eq(w|S)

[
log

q(w|S)

m(w)

]
.

The classical Blahut-Arimoto algorithm [4, 5] takes the following
steps alternatively with β the Lagrangian multiplier:

q(w|S) =
m(w) exp(−β d(w, S))∫
m(v) exp(−β d(v, S))dv

m(w) =
∑
S

p∗(S)q(w|S)

Interpretation: I(w;S) is a regularizer, which forces w to
contain less information about a particular S; less memorization
implies better generalization.

Training β-BNN: approximate Blahut-Arimoto

Since q and m are intractable, we use variational approximation:

q step: update the “posterior” by a parametric approximation

θ(S) = arg min
θ

KL
(
q(w|θ)‖q(w|S)

)
= arg min

θ
KL
(
q(w|θ)‖m(w)

)
+ β Eq(w|θ)

[
d(w, S)

]
m step: update the “prior” by a Monte Carlo approximation

m(w) '
∑

S p
∗(S)q(w|θ(S)) ' 1

K

∑K
k=1 q(w|θ(Bk)), where Bk is

a bootstrap sample of size nb drawn from the empirical distribution
pS(x, y) = 1

n

∑n
i=1 δ(xi = x)δ(yi = y).

Experiments on Colorful MNIST [6]

Algorithm β∗ Accuracy

Vanilla BNN 1
n 90.05

Fixed-prior β-BNN 10−10 95.86
β-BNN 10−5 96.08
Online β-BNN 10−3 97.12

Table 1. Classification results.
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Figure 1. Test accuracy over epochs.

Experimental details:

– q(w|θ) is specified as a
diagonal Gaussian.

–p(y|x,w) = MLP(x;w).

– q step is optimized by
SGD with batch size 128,
learning rate 10−3.

–m step: K = 5, since the
performance only
increases marginally for
K ≥ 5.

– Bootstrap sample size
nb = 104. For Online
β-BNN, nb = 128.

– Vanilla BNN =
fixed-prior β-BNN with
β = 1

n and K = 1.
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