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Main idea Background: lossy compression Lossless compression = BNN
We propose an alternative training Goal: determine the minimal number of This connection with lossless compression
framework for Bayesian neural networks bits, denoted by IR, to encode a signal X, was established by [1] using the minimum
(BNNs), which is motivated by viewing such that the distortion of X yielded by description length (MDL) and the bits
the latent variable model for supervised the autoencoding does not exceed D. back argument for noisy weights:

learning as an autoencoder for data
transmission. Then, a natural objective R(D)

can be invoked from the rate-distortion k A which is considered as vanilla BNN when
X — Autoencoder —— X

min KL(q||prior) + E,|[data misfit],
q

theory leading to an iterative update on the variational posterior g is specitied as
the “prior’ and the “posterior. : D diagonal Gaussian due to [2].

Model uncertainty: Bayesian vs. “Frequentist” Training 5-BNN: approximate Blahut-Arimoto

Bayesians describe data S' = {(x;,v;)}!, through generative Since ¢ and m are intractable, we use variational approximation:
decomposition of the latent variable model

p(S,w) = p(w)p(S|w) = p(w) Hp(yz-lxz-, wy)p(xi|w,y).

g step: update the “posterior’ by a parametric approximation

0(5) = argmin KL (¢(w|8)llg(w]5))
From a "Frequentist” viewpoint, we assume there exists a . \

— KL 9 W d
“true” data distribution p*(.S), which is different from the arg@mm (q(w\ )Hm(w)) +h q<w’9>[ (w. S)]
marginal likelihood p(S). Besides, we introduce an encoder
q(w|S), which is also different from the posterior p(w|.S).
Then, the latent variable model of the data decomposes as

m step: update the “prior’ by a Monte Carlo approximation

m(w) ~ 3¢ p*(S)q(w]0(S)) ~ =371 q(w|O(By)), where By, is

a bootstrap sample of size nj, drawn from the empirical distribution

p(S,w) = p*(S)g(w|S). ps(x,y) = =30 0(xi = x)d(y; = y).

Rate-distortion theory for supervised learning
Experiments on Colorful MNIST [6]

Taking p(y|x, w) as the decoder, q(w|S) as the encoder, we | |
Experimental details:

have a full view of supervised learning with model uncertainty:

Algorithm B8*  Accuracy —q(wlf) is specified as a
Predictive: ¢(y | x, ) = /p(y |z, w)q(w]S) dw. Vanilla BNN L 90.05  diagonal Gaussian.
Fixed-prior S-BNN 1071 95.86 -p(y|z, w) = MLP(z; w).

@ 5-BNN 107 96.08 —q step Is optimized by
N Online 3-BNN  107°  97.12  SGD with batch size 128,

able 1. Classification results. | : 3

earning rate 10 °.
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-m step: KK = 9, since the

— | performance only
Inspired by rate-distortion, we have a compression-error tradeoff: increases marginally for
_ § >
min | [(w;5) = S (5)Eq(w)s) 108 q*(w‘s> ’ —é(oo—tsiap sample size
g(w|S)ea L s P*(S)q(w]S)- " 0 o Onf
i n i ny, = 10*. For Online
s.t. By ) Equ)s)|d(w, S) = — Zlogp(yﬂxi, w)| < D i T B-BNN, n;, = 128.
' i=1 ' — e | — Vanilla BNN =
Applying variational characterization [3], We(ob‘tggn 7 F.a 12'0T | a% fixed—lprior B-BNN with
W lgure 1. lest accuracy over epochs. 1 _
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