Efficient Inference and Learning for Undirected Probabilistic Graphical Models

Xu (Shell) Hu

École des Ponts ParisTech

Joint work with Guillaume Obozinski

Outline

(1) Variational Methods for Undirected Graphical Models
(2) Learning of Conditional Random Fields
(3) IDAL Algorithm
(4) Experiments

Undirected Graphical Models

Examples: Hidden MRF/CRF (generative/discriminative pair).
A discriminative model: conditional random field

- CRF defines a joint distribution over the random variables $Y:=\left[Y_{1}, \ldots, Y_{S}\right]$ given the observation X :

$$
p(y \mid x ; w):=\frac{1}{Z(x, w)} \prod_{c \in \mathcal{C}} \psi_{c}\left(x, y_{c}\right) .
$$

- $\psi_{c}\left(x, y_{c}\right)$ is a local function (a.k.a. factor) with respect to clique c. Usually, $\psi_{c}\left(x, y_{c}\right)=\left\langle w_{c}, \phi_{c}\left(x, y_{c}\right)\right\rangle$.

Applications of CRF

- Computer vision (e.g. depth estimation):

Applications of CRF

- Natural language processing (e.g. dependency parsing):

$$
\begin{aligned}
& i=0 \quad 1 \quad 2 \quad n \\
& \begin{array}{ll}
n \text { OOOOOOOO } \\
\text { OOOOOOO OO O O O O O }
\end{array} \\
& 00000000 \\
& 00000000 \\
& 00000000 \\
& 00000000 \\
& p(y \mid x) \propto \prod_{i j \in E} \varphi_{i j}(y(i, j), x) \cdot \varphi_{T}(y) \\
& 200000000 \\
& y \text { has to be a tree }
\end{aligned}
$$

Undirected Graphical Models

- Factorized form: $p(y)=\frac{1}{Z} \prod_{c} \psi_{c}\left(y_{c}\right)$.
- Exponential family form: $p(y \mid \theta)=\exp (\theta(y)-F(\theta))$
- Natural parameter: $\theta(y)=\sum_{c} \theta_{c}\left(y_{c}\right)$.
- Log-partition function: $F(\theta)=\log \sum_{y} \exp (\theta(y))=\log Z$.

Inference in Undirected Graphical Models

Task: estimate marginal probabilities given θ.
Example: inference on a chain by dynamic programming

$$
\begin{aligned}
p\left(x_{j}\right)= & \frac{1}{Z} \sum_{x_{V \backslash\{j, n\}}} \prod_{i=1}^{n-1} \psi_{i}\left(x_{i}\right) \prod_{i=2}^{n-1} \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \underbrace{\sum_{x_{n}} \psi_{n}\left(x_{n}\right) \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)}_{\mu_{n \rightarrow n-1}\left(x_{n-1}\right)} \\
= & \frac{1}{Z} \sum_{x_{V \backslash\{j, n, n-1\}}} \prod_{i=1}^{n-2} \psi_{i}\left(x_{i}\right) \prod_{i=2}^{n-2} \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \times \\
& \times \underbrace{\sum_{x_{n-1}} \psi_{n-1}\left(x_{n-1}\right) \psi_{n-2, n-1}\left(x_{n-2}, x_{n-1}\right) \mu_{n \rightarrow n-1}\left(x_{n-1}\right)}_{\mu_{n-1 \rightarrow n-2}\left(x_{n-2}\right)} \\
= & \frac{1}{Z} \sum_{x_{V \backslash\{1, j, n, n-1\}}} \mu_{1 \rightarrow 2}\left(x_{2}\right) \ldots \mu_{n-1 \rightarrow n-2}\left(x_{n-2}\right)
\end{aligned}
$$

The key quantity: $Z=\sum_{x_{i}} \mu_{i-1 \rightarrow i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right) \mu_{i+1 \rightarrow i}\left(x_{i}\right)$.

Variational View of Inference

- The key problem is computing F.
- Variational inference $\min _{q \in \mathcal{P}} D_{\mathrm{KL}}(q \| p)$:

$$
\begin{aligned}
F(\theta) & =\log \sum_{y} \exp (\theta(y)) \geq \sum_{y} q(y) \log \frac{\exp \theta(y)}{q(y)} \\
& =\mathbb{E}_{q}[\theta(y)]+H_{\text {Shannon }}(y ; q)
\end{aligned}
$$

- Fenchel's duality: $F(\theta)=\sup _{q \in \mathcal{P}}\left[\mathbb{E}_{q}[\theta(y)]+H_{\text {Shannon }}(y ; q)\right]$.
- The maximum q is obtained at $q^{*}(y)=p(y)=\exp (\theta(y)-F(\theta))$, which is also known as the maximum entropy principle.

Variational View of Inference

- Thanks to the Factorization: $\mathbb{E}_{q}[\theta(y)]=\sum_{c} \sum_{y_{c}} q\left(y_{c}\right) \theta_{c}\left(y_{c}\right)$.
- Equivalent Fenchel conjugate with only marginals:

$$
F(\theta)=\sup _{\mu \in \mathcal{M}}\left[\langle\mu, \theta\rangle+H_{\text {Shannon }}(y ; \mu)\right]
$$

- Marginal polytope:
$\mathcal{M}=\left\{\mu: \mu_{c}\left(y_{c}\right)\right.$ is a valid marginal probability for some $\left.q \in \mathcal{P}\right\}$

Variational View of Inference

- Variational view doesn't reduce the complexity of inference.
- Intractable terms \mathcal{M} and $H_{\text {Shannon }}(y ; \mu)$:

Mean-field inference

$$
\begin{aligned}
& \mathcal{M} \rightarrow\left\{\mu \in \mathcal{M}: \mu(y)=\prod_{i} \mu_{i}\left(y_{i}\right)\right\} \\
& H_{\text {Shannon }}(y ; \mu) \rightarrow \sum_{i} H\left(y_{i} ; \mu_{i}\right)
\end{aligned}
$$

Loopy belief propagation

$$
\begin{aligned}
& \mathcal{M} \rightarrow\left\{\mu: \mu_{c} \in \Delta_{c}, \sum_{y_{j}} \mu_{i j}\left(y_{i}, y_{j}\right)=\mu_{i}\left(y_{i}\right)\right\} \\
& H_{\text {Shannon }}(y ; \mu) \rightarrow \sum_{i} H\left(y_{i} ; \mu_{i}\right)-\sum_{i j} I\left(y_{i}, y_{j} ; \mu_{i j}\right)
\end{aligned}
$$

Abstract CRF model

Let $\mathcal{C}=\mathcal{V} \cup \mathcal{E}, \quad \log p_{w}\left(y^{o} \mid x^{o}\right)=\sum_{c \in \mathcal{C}}\left\langle w_{\tau_{c}}, \phi_{c}\left(x^{o}, y_{c}^{o}\right)\right\rangle-\log Z\left(x^{o}, w\right)$,
with $y_{\{s, t\}}=y_{s} y_{t}^{\top}$ and $Z\left(x^{o}, w\right)=\sum_{y_{1}} \ldots \sum_{y_{S}} \exp \left(\sum_{c \in \mathcal{C}}\left\langle w_{\tau_{c}}, \phi_{c}\left(x^{o}, y_{c}\right)\right\rangle\right)$

$$
\begin{aligned}
\text { In fact }-\log p_{w}\left(y^{o} \mid x^{o}\right) & =\log \sum_{y} \exp \left(\sum_{c \in \mathcal{C}}\left\langle w_{\tau_{c}}, \phi_{c}\left(x^{o}, y_{c}\right)-\phi_{c}\left(x^{o}, y_{c}^{o}\right)\right\rangle\right) \\
& =\log \sum_{y} \exp \sum_{c \in \mathcal{C}}\left\langle\Psi_{(c)}^{\top} w, y_{c}\right\rangle \\
& =: F\left(\Psi^{\top} w\right) \quad \text { with } \quad F(\theta)=\log \sum_{y} \exp \sum_{c \in \mathcal{C}}\left\langle\theta_{(c)}, y_{c}\right\rangle
\end{aligned}
$$

Regularized maximum likelihood estimation

The regularized maximum likelihood estimation problem

$$
\min _{w}-\log p_{w}\left(y^{o} \mid x^{o}\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

is reformulated as

$$
\min _{w} F\left(\Psi^{\top} w\right)+\frac{\lambda}{2}\|w\|_{2}^{2} \quad \text { with } \quad F(\theta)=\log \sum_{y} \exp \sum_{c \in \mathcal{C}}\left\langle\theta_{(c)}, y_{c}\right\rangle
$$

F is essentially another way of writing the log-partition function Z.
Big issue: NP-hardness of inference in graphical models

- F and its gradient are NP-difficult to compute.
\Rightarrow the maximum likelihood estimator is intractable.
- F or ∇F can be estimated using MCMC methods to perform approximate inference.
- Approximate inference can also be solved as an optimization problem with variational methods.

Compare with the "disconnected graph" case

$$
\begin{gathered}
\min _{w} \sum_{s=1}^{S} \log p_{w}\left(y_{s}^{o} \mid x^{o}\right)+\frac{\lambda}{2}\|w\|_{2}^{2} \\
\min _{w} \sum_{s=1}^{S} F_{s}\left(\psi_{s}^{\top} w\right)+\frac{\lambda}{2}\|w\|_{2}^{2} \quad \text { with } \quad F_{s}(w):=\log \sum_{y_{s}} \exp \left\langle\theta_{(s)}, y_{s}\right\rangle
\end{gathered}
$$

- F_{s} is easy to compute: the sum of K terms
- The objective is a sum of a large number of terms
\Rightarrow Very fast randomized algorithms can be used to solve this problem SAG Roux et al. (2012)
SVRG Johnson and Zhang (2013)
SAGA Defazio et al. (2014), etc
SDCA Shalev-Shwartz and Zhang (2016)

$$
\max _{\alpha_{1}, \ldots, \alpha_{S}} \sum_{s=1}^{S} F_{s}^{*}\left(\alpha_{s}\right)+\frac{1}{2 \lambda}\left\|\sum_{s=1}^{S} \psi_{s} \alpha_{s}\right\|_{2}^{2}
$$

Could we do the same for CRFs? With SDCA?

Fenchel conjugate of the log-partition function

$$
F(\theta)=\max _{\mu \in \mathcal{M}}\langle\mu, \theta\rangle+H_{\text {Shannon }}(\mu)
$$

- The marginal polytope \mathcal{M} is the set of all realizable moments vectors

$$
\mathcal{M}:=\left\{\mu=\left(\mu_{c}\right)_{c \in \mathcal{C}} \mid \exists Y \quad \text { s.t. } \quad \forall c \in \mathcal{C}, \mu_{c}=\mathbb{E}\left[Y_{c}\right]\right\}
$$

- $H_{\text {Shannon }}$ is the Shannon entropy of the maximum entropy distribution with moments μ.

$$
\begin{gathered}
P^{\#}(w):=F\left(\Psi^{\top} w\right)+\frac{\lambda}{2}\|w\|_{2}^{2} \\
D^{\#}(\mu):=H_{\text {Shannon }}(\mu)-\iota_{\mathcal{M}}(\mu)-\frac{1}{2 \lambda}\|\Psi \mu\|_{2}^{2} \\
\min _{w} P^{\#}(w) \quad \text { and } \max _{\mu} D^{\#}(\mu)
\end{gathered}
$$

form a pair of primal and dual optimization problems.
Both $H_{\text {Shannon }}$ and \mathcal{M} are intractable \rightarrow NP-hard problem in general

Relaxing the marginal into the local polytope.
A classical relaxation for \mathcal{M} : the local polytope \mathcal{L}
For $\mathcal{C}=\mathcal{E} \cup \mathcal{V}$
Node and edge simplex constraints:

$$
\begin{gathered}
\forall s \in \mathcal{V}, \quad \triangle_{s}:=\left\{\mu_{s} \in \mathbb{R}_{+}^{k} \mid \mu_{s}^{\top} 1=1\right\} \\
\forall\{s, t\} \in \mathcal{E}, \quad \triangle_{\{s, t\}}:=\left\{\mu_{s t} \in \mathbb{R}_{+}^{k \times k} \mid 1^{\top} \mu_{s t}^{\top} 1=1\right\} \\
\mathcal{I}:=\left\{\mu=\left(\mu_{c}\right)_{c \in \mathcal{C}} \mid \forall c \in \mathcal{C}, \quad \mu_{c} \in \triangle_{c}\right\} \\
\mathcal{L}:=\left\{\mu \in \mathcal{I} \mid \forall\{s, t\} \in \mathcal{E}, \quad \mu_{s t} \mathbf{1}=\mu_{s}, \quad \mu_{s t}^{\top} \mathbf{1}=\mu_{t}\right\} \\
\mathcal{L}=\mathcal{I} \cap\{\mu \mid A \mu=0\}
\end{gathered}
$$

for an appropriate definition of A...

Surrogates for the entropy

Various entropy surrogates exist, e.g.:

- Bethe entropy (nonconvex),
- Tree-reweighted entropy (TRW) (convex on \mathcal{L} but not on $\mathcal{I})$

Separable surrogates $H_{\text {approx }}$
We consider surrogates of the form $H_{\text {approx }}(\mu)=\sum_{c \in \mathcal{C}} h_{c}\left(\mu_{c}\right)$, such that

- each function h_{c} is smooth ${ }^{a}$ and convex on \triangle_{c} and
- $H_{\text {approx }}$ is strongly convex on \mathcal{L}

In particular we propose to use

- the Gini entropy: $h_{c}\left(\mu_{c}\right)=1-\left\|\mu_{c}\right\|_{F}^{2}$
- a quadratic counterpart of the oriented tree-reweighted entropy:

[^0]
Relaxed dual problem

$$
\begin{aligned}
& \mathcal{M} \xrightarrow{\text { relax to }} \mathcal{L}=\mathcal{I} \cap\{\mu \mid A \mu=0\} \\
& H_{\text {Shannon }} \xrightarrow{\text { relax to }} H_{\text {approx }}(\mu):=\sum_{c \in \mathcal{C}} h_{c}\left(\mu_{c}\right) \text {. }
\end{aligned}
$$

Problem relaxation

$$
\begin{aligned}
& D^{\#}(\mu):=H_{\text {Shannon }}(\mu)-\iota_{\mathcal{M}}(\mu)-\frac{1}{2 \lambda}\|\Psi \mu\|_{2}^{2} \\
& \text { relax to } \downarrow \\
& D(\mu):=H_{\text {approx }}(\mu)-\iota_{\mathcal{I}}(\mu)-\iota_{\{A \mu=0\}}-\frac{1}{2 \lambda}\|\Psi \mu\|_{2}^{2}
\end{aligned}
$$

so that with

$$
f_{c}^{*}\left(\mu_{c}\right): h_{c}\left(\mu_{c}\right)-\iota_{\triangle_{c}}\left(\mu_{c}\right) \quad \text { and } \quad g^{*}(\mu)=-\frac{1}{2 \lambda}\|\Psi \mu\|_{2}^{2}
$$

we have $\quad D(\mu)=\sum_{c \in \mathcal{C}} f_{c}^{*}\left(\mu_{c}\right)+g^{*}(\mu)-\iota_{\{A \mu=0\}}$.

A dual augmented Lagrangian formulation

$$
D(\mu)=\sum_{c \in \mathcal{C}} f_{c}^{*}\left(\mu_{c}\right)+g^{*}(\mu)-\iota_{\{A \mu=0\}}
$$

Idea: without the linear constraint, we could exploit the form of the objective to use a fast algorithm such as stochastic dual coordinate ascent.

$$
D_{\rho}(\mu, \xi)=\sum_{c \in \mathcal{C}} f_{c}^{*}\left(\mu_{c}\right)+g^{*}(\mu)+\langle\xi, A \mu\rangle-\frac{1}{2 \rho}\|A \mu\|_{2}^{2}
$$

By strong duality, we need to solve

$$
\min _{\xi} d(\xi) \quad \text { with } \quad d(\xi):=\max _{\mu} D_{\rho}(\mu, \xi)
$$

The algorithm

Need to solve

$$
\min _{\xi} d(\xi) \quad \text { with } \quad d(\xi):=\max _{\mu} D_{\rho}(\mu, \xi)
$$

with

$$
D_{\rho}(\mu, \xi)=\sum_{c \in \mathcal{C}} f_{c}^{*}\left(\mu_{c}\right)+g^{*}(\mu)+\langle\xi, A \mu\rangle-\frac{1}{2 \rho}\|A \mu\|_{2}^{2}
$$

Note that we have $\nabla d(\xi)=A \mu_{\xi}$ with $\mu_{\xi}=\arg \min _{\xi} D_{\rho}(\mu, \xi)$.

Combining an inexact dual Lagrangian method with a subsolver \mathcal{A}

At epoch t :

- Maximize D_{ρ} partially w.r.t. μ using a fixed number of steps of a (stochastic) linearly convergent algorithm \mathcal{A} to get $\hat{\mu}^{t}$ from the $\hat{\mu}^{t-1}$.
- Take an inexact gradient step on d with $\xi^{t+1}=\xi^{t}-\frac{1}{L} A \hat{\mu}^{t}$

Main technical lemma

- Let ξ^{t} (resp. $\hat{\mu}^{t}$) the value of ξ (resp. μ) at the end of epoch t
- Let $\hat{\Delta}_{t}:=\max _{\mu} D_{\rho}\left(\mu, \xi^{t}\right)-D_{\rho}\left(\hat{\mu}^{t}, \xi^{t}\right) \quad$ and $\quad \Gamma_{t}:=d\left(\xi^{t}\right)-d\left(\xi^{*}\right)$.
- Let $\Delta_{t}^{0}:=\max _{\mu} D_{\rho}\left(\mu, \xi^{t}\right)-D_{\rho}\left(\mu_{0}^{t}, \xi^{t}\right)$

If algorithm \mathcal{A} used at epoch t to maximize $D_{\rho}(\mu, \xi)$ w.r.t. μ is such that

$$
\exists \beta \in(0,1), \quad \mathbb{E}\left[\hat{\Delta}_{t}\right] \leq \beta \mathbb{E}\left[\Delta_{t}^{0}\right]
$$

then $\exists \kappa \in(0,1)$ characterizing d and $\exists C>0$ such that, if $\mu_{0}^{t}=\hat{\mu}^{t-1}$,

$$
\left\|\begin{array}{l}
\mathbb{E}\left[\hat{\Delta}_{T_{\mathrm{ex}}}\right] \\
\mathbb{E}\left[\Gamma_{T_{\mathrm{ex}}}\right]
\end{array}\right\| \leq C \lambda_{\max }(\beta)^{T_{\mathrm{ex}}}\left\|\begin{array}{l}
\mathbb{E}\left[\hat{\Delta}_{0}\right] \\
\mathbb{E}\left[\Gamma_{0}\right]
\end{array}\right\|
$$

where $\lambda_{\max }(\beta)$ is the largest eigenvalue of the matrix $M(\beta)=\left[\begin{array}{cc}6 \beta & 3 \beta \\ 1 & 1-\kappa\end{array}\right]$

Main theoretical result: linear convergence in the dual

Let \mathcal{A} be an iterative algorithm used to solve partially $\max _{\mu} D_{\rho}(\mu, \xi)$.

- Let ξ^{t} (resp. $\hat{\mu}^{t}$) the value of ξ (resp. μ) at the end of epoch t
- Let $\hat{\Delta}_{t}:=\max _{\mu} D_{\rho}\left(\mu, \xi^{t}\right)-D_{\rho}\left(\hat{\mu}^{t}, \xi^{t}\right) \quad$ and $\quad \Gamma_{t}:=d\left(\xi^{t}\right)-d\left(\xi^{*}\right)$.

Proposition: If

- \mathcal{A} is a linearly convergent algorithm
- at epoch t, \mathcal{A} is initialized with $\hat{\mu}^{t-1}$ (\rightarrow use of warm-starts)
- \mathcal{A} is run for a fixed ahead $T_{\text {in }}$ number of iteration at each epoch then we have
- $\hat{\Delta}_{t}, \Gamma_{t} \xrightarrow{\text { a.s. }} 0$ linearly
- the residuals $\left\|A \hat{\mu}^{t}\right\|_{2}^{2} \xrightarrow{\text { a.s. }} 0$ linearly
- the smooth part of the objective a.s. converges linearly

Global linear convergence in the primal

Let P be the relaxed primal objective

$$
P(w):=F_{\mathcal{L}}\left(\Psi^{\top} w\right)+\frac{\lambda}{2}\|w\|_{2}^{2}, \quad \text { with } \quad F_{\mathcal{L}}(\theta):=\max _{\mu \in \mathcal{L}}\langle\theta, \mu\rangle+H_{\text {approx }}(\mu) .
$$

Corollary

Let $\quad \hat{w}^{t}=-\frac{1}{\lambda} \Psi \hat{\mu}^{t}$.
If

- \mathcal{A} is a linearly convergent algorithm and
- the function $\mu \mapsto-H_{\text {approx }}(\mu)+\frac{1}{2 \rho}\|A \mu\|_{2}^{2}$ is strongly convex, then $\quad P\left(\hat{w}^{t}\right)-P\left(w^{\star}\right)$ converges to 0 linearly a.s.

Since a fixed nb of inner iterations are done at each epoch, the linear convergence is as a function of the total number of clique updates.

Related work

A lot of work on approximate inference for CRFs:

- Komodakis et al. (2007); Sontag et al. (2008); Savchynskyy et al. (2011)

Learning method going beyond saddle formulations:

- Meshi et al. (2010); Hazan and Urtasun (2010); Lacoste-Julien et al. (2013) Learning in the dual for structured SVMs with only clique-wise updates:
- With relaxation + smoothing of the linear constraints Meshi et al. (2015) and using block coordinate Frank-Wolfe (BCFW) or block coordinate ascent.
- With multiplier and a greedy primal dual algorithm, Yen et al. (2016) show a global linear convergence result in the dual.
Convergence rates for approximate gradient descent
- Schmidt et al. (2011); Devolder et al. (2014); Lan and Monteiro (2016); Lin et al. (2017)
However,
- the connexion with SDCA was not made,
- there was no linear convergence guarantee in the primal

Experiments: Algorithms

SoftBCFW Stochastic block coordinate Frank-Wolfe + penalty method (Meshi et al., 2015)
SoftSDCA Stochastic block coordinate prox ascent + penalty method
GDMM Dual decomposed learning with factorwise oracle (Yen et al., 2016)
IDAL Our algorithm

Datasets

Gaussian mixture Potts model

- 10×10 grid graph with 5 classes
- gaussian features in \mathbb{R}^{10}
- $\left(w_{\tau_{1}} \in \mathbb{R}^{10 \times 5}, w_{\tau_{2}} \in \mathbb{R}^{5 \times 5}\right)$
- 50 training grids

Semantic segmentation of images

- MSRC-21 dataset (Shotton et al., 2006)
- 21 classes
- 50 features $\left(w_{\tau_{1}} \in \mathbb{R}^{50 \times 21}, w_{\tau_{2}} \in \mathbb{R}^{21 \times 21}\right)$
- 335 training images

Results for Gaussian mixture Potts model ($\lambda=10, \rho=1$)

Bound on duality gap

Dual objective

Gap on marginalization constraints

Accuracy on test data

Result on segmentation dataset, max margin variant $(\lambda=1, \rho=0.1)$

Bound on duality gap

Dual objective

Gap on marginalization constraints

Accuracy on test data

Future work

- How do we get rid of these relaxations?
- Do we need higher order marginals?
- Is there a better divergence for $D\left(p_{0}(y \mid x) \| p_{\theta}(y \mid x)\right)$ than KL?

References I

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In NIPS, pages 1646-1654.
Devolder, O., Glineur, F., and Nesterov, Y. (2014). First-order methods of smooth convex optimization with inexact oracle. Mathematical Programming, 146(1-2):37-75.
Gygli, M., Norouzi, M., and Angelova, A. (2017). Deep value networks learn to evaluate and iteratively refine structured outputs. In International Conference on Machine Learning, pages 1341-1351.
Hazan, T. and Urtasun, R. (2010). A primal-dual message-passing algorithm for approximated large scale structured prediction. In NIPS, pages 838-846.
Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems, pages 315-323.
Komodakis, N., Paragios, N., and Tziritas, G. (2007). MRF optimization via dual decomposition: Message-passing revisited. In ICCV, pages 1-8.
Lacoste-Julien, S., Jaggi, M., Schmidt, M., and Pletscher, P. (2013). Block-coordinate Frank-Wolfe optimization for structural SVMs. In ICML, pages 53-61.
Lan, G. and Monteiro, R. D. (2016). Iteration-complexity of first-order augmented Lagrangian methods for convex programming. Mathematical Programming, 155(1-2):511-547.
Lin, H., Mairal, J., and Harchaoui, Z. (2017). QuickeNing: A generic quasi-Newton algorithm for faster gradient-based optimization. arXiv preprint arXiv:1610.00960.
Meshi, O., Sontag, D., Globerson, A., and Jaakkola, T. S. (2010). Learning efficiently with approximate inference via dual losses. In ICML, pages 783-790.

References II

Meshi, O., Srebro, N., and Hazan, T. (2015). Efficient training of structured SVMs via soft constraints. In AISTATS, pages 699-707.
Roux, N. L., Schmidt, M., and Bach, F. R. (2012). A stochastic gradient method with an exponential convergence rate for finite training sets. In NIPS, pages 2663-2671.
Savchynskyy, B., Kappes, J., Schmidt, S., and Schnörr, C. (2011). A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling. In CVPR, pages 1817-1823.
Schmidt, M., Le Roux, N., and Bach, F. R. (2011). Convergence rates of inexact proximal-gradient methods for convex optimization. In NIPS, pages 1458-1466.
Shalev-Shwartz, S. and Zhang, T. (2016). Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. Mathematical Programming, 155(1-2):105-145.
Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV. Springer.
Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., and Weiss, Y. (2008). Tightening LP relaxations for MAP using message passing. In UAI, pages 503-510.
Yen, I. E.-H., Huang, X., Zhong, K., Zhang, R., Ravikumar, P. K., and Dhillon, I. S. (2016). Dual decomposed learning with factorwise oracle for structural SVM of large output domain. In NIPS, pages 5024-5032.

[^0]: ${ }^{\mathrm{a}}$ i.e. has Lipschitz gradients

