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Undirected Graphical Models

Examples: Hidden MRF/CRF (generative/discriminative pair).

A discriminative model: conditional random field
CRF defines a joint distribution over the random variables
Y := [Y1, . . . , YS ] given the observation X:

p(y | x;w) := 1
Z(x,w)

∏
c∈C

ψc(x, yc).

ψc(x, yc) is a local function (a.k.a. factor) with respect to clique c.
Usually, ψc(x, yc) = 〈wc, φc(x, yc)〉.



  

Applications of CRF

● Computer vision (e.g. depth estimation): 

Images of 2 views

The displacement of pixel s



  

Applications of CRF

● Natural language processing (e.g. dependency 
parsing):

The sentence y has to be a tree



Undirected Graphical Models

Factorized form: p(y) = 1
Z

∏
c

ψc(yc).

Exponential family form: p(y|θ) = exp(θ(y)− F (θ))
I Natural parameter: θ(y) =

∑
c

θc(yc).

I Log-partition function: F (θ) = log
∑

y

exp(θ(y)) = logZ.



Inference in Undirected Graphical Models
Task: estimate marginal probabilities given θ.

Example: inference on a chain by dynamic programming

The key quantity: Z =
∑
xi

µi−1→i(xi)ψi(xi)µi+1→i(xi).



Variational View of Inference

The key problem is computing F .
Variational inference min

q∈P
DKL(q‖p):

F (θ) = log
∑
y

exp(θ(y)) ≥
∑
y

q(y) log exp θ(y)
q(y)

= Eq[θ(y)] +HShannon(y; q)

Fenchel’s duality: F (θ) = sup
q∈P

[Eq[θ(y)] +HShannon(y; q)].

The maximum q is obtained at q∗(y) = p(y) = exp(θ(y)− F (θ)),
which is also known as the maximum entropy principle.



Variational View of Inference

Thanks to the Factorization: Eq[θ(y)] =
∑
c

∑
yc

q(yc)θc(yc).

Equivalent Fenchel conjugate with only marginals:

F (θ) = sup
µ∈M

[〈µ, θ〉+HShannon(y;µ)]

Marginal polytope:

M = {µ : µc(yc) is a valid marginal probability for some q ∈ P}



Variational View of Inference
Variational view doesn’t reduce the complexity of inference.
Intractable terms M and HShannon(y;µ):

Mean-field inference

M→ {µ ∈M : µ(y) =
∏
i

µi(yi)}

HShannon(y;µ)→
∑
i

H(yi;µi)

Loopy belief propagation

M→ {µ : µc ∈ ∆c,
∑
yj

µij(yi, yj) = µi(yi)}

HShannon(y;µ)→
∑
i

H(yi;µi)−
∑
ij

I(yi, yj ;µij)



Abstract CRF model

Let C = V ∪ E , log pw(yo|xo) =
∑
c∈C
〈wτc , φc(xo, yoc )〉 − logZ(xo, w),

with y{s,t} = ysy
ᵀ
t and Z(xo, w) =

∑
y1

. . .
∑
yS

exp
(∑
c∈C
〈wτc , φc(xo, yc) 〉

)

In fact − log pw(yo|xo) = log
∑
y

exp
(∑
c∈C
〈wτc , φc(xo, yc)− φc(xo, yoc )〉

)
= log

∑
y

exp
∑
c∈C
〈Ψᵀ

(c)w, yc〉

=: F
(
Ψᵀw

)
with F (θ) = log

∑
y

exp
∑
c∈C
〈θ(c), yc〉.



Regularized maximum likelihood estimation
The regularized maximum likelihood estimation problem

min
w
− log pw(yo|xo) + λ

2 ‖w‖
2
2

is reformulated as

min
w
F (Ψᵀw) + λ

2 ‖w‖
2
2 with F (θ) = log

∑
y

exp
∑
c∈C
〈θ(c), yc〉,

F is essentially another way of writing the log-partition function Z.

Big issue: NP-hardness of inference in graphical models
F and its gradient are NP-difficult to compute.

⇒ the maximum likelihood estimator is intractable.
F or ∇F can be estimated using MCMC methods to perform
approximate inference.
Approximate inference can also be solved as an optimization problem
with variational methods.



Compare with the “disconnected graph” case

min
w

S∑
s=1

log pw(yos |xo) + λ

2 ‖w‖
2
2

min
w

S∑
s=1

Fs(ψᵀ
sw) + λ

2 ‖w‖
2
2 with Fs(w) := log

∑
ys

exp〈θ(s), ys〉.

Fs is easy to compute: the sum of K terms
The objective is a sum of a large number of terms

⇒ Very fast randomized algorithms can be used to solve this problem
SAG Roux et al. (2012)

SVRG Johnson and Zhang (2013)
SAGA Defazio et al. (2014), etc
SDCA Shalev-Shwartz and Zhang (2016)

max
α1,...,αS

S∑
s=1

F ∗s (αs) + 1
2λ‖

S∑
s=1

ψsαs‖22

Could we do the same for CRFs? With SDCA?



Fenchel conjugate of the log-partition function

F (θ) = max
µ∈M

〈µ, θ〉+HShannon(µ),

The marginal polytope M is the set of all realizable moments vectors

M :=
{
µ = (µc)c∈C | ∃Y s.t. ∀c ∈ C, µc = E[Yc]

}
.

HShannon is the Shannon entropy of the maximum entropy
distribution with moments µ.

P#(w) := F
(
Ψᵀw

)
+ λ

2 ‖w‖
2
2

D#(µ) := HShannon(µ)− ιM(µ)− 1
2λ‖Ψµ‖

2
2

min
w
P#(w) and max

µ
D#(µ)

form a pair of primal and dual optimization problems.
Both HShannon and M are intractable → NP-hard problem in general



Relaxing the marginal into the local polytope.
A classical relaxation for M: the local polytope L
For C = E ∪ V
Node and edge simplex constraints:

∀s ∈ V, 4s :=
{
µs ∈ Rk+ | µᵀs1 = 1

}
∀{s, t} ∈ E , 4{s,t} :=

{
µst ∈ Rk×k+ | 1ᵀµᵀst1 = 1

}
.

I :=
{
µ = (µc)c∈C | ∀c ∈ C, µc ∈ 4c

}
L :=

{
µ ∈ I | ∀{s, t} ∈ E , µst 1 = µs, µᵀst 1 = µt

}
L = I ∩ {µ | Aµ = 0}

for an appropriate definition of A...



Surrogates for the entropy
Various entropy surrogates exist, e.g.:

Bethe entropy (nonconvex),
Tree-reweighted entropy (TRW) (convex on L but not on I)

Separable surrogates Happrox

We consider surrogates of the form Happrox(µ) =
∑
c∈C

hc(µc) , such that

each function hc is smootha and convex on 4c and
Happrox is strongly convex on L

In particular we propose to use
the Gini entropy: hc(µc) = 1− ‖µc‖2F
a quadratic counterpart of the oriented tree-reweighted entropy:

ai.e. has Lipschitz gradients



Relaxed dual problem
M relax to−→ L = I ∩ {µ | Aµ = 0}

HShannon
relax to−→ Happrox(µ) :=

∑
c∈C

hc(µc) .

Problem relaxation
D#(µ) := HShannon(µ) − ιM(µ)− 1

2λ‖Ψµ‖
2
2

relax to ↓

D(µ) := Happrox(µ) − ιI(µ) − ι{Aµ=0} −
1

2λ‖Ψµ‖
2
2

so that with

f∗c (µc) : hc(µc) − ι4c(µc) and g∗(µ) = − 1
2λ‖Ψµ‖

2
2

we have D(µ) =
∑
c∈C

f∗c (µc) + g∗(µ)− ι{Aµ=0} .



A dual augmented Lagrangian formulation

D(µ) =
∑
c∈C

f∗c (µc) + g∗(µ)− ι{Aµ=0}

Idea: without the linear constraint, we could exploit the form of the
objective to use a fast algorithm such as stochastic dual coordinate ascent.

Dρ(µ, ξ) =
∑
c∈C

f∗c (µc) + g∗(µ) + 〈ξ, Aµ〉 − 1
2ρ‖Aµ‖

2
2

By strong duality, we need to solve

min
ξ
d(ξ) with d(ξ) := max

µ
Dρ(µ, ξ).



The algorithm
Need to solve

min
ξ
d(ξ) with d(ξ) := max

µ
Dρ(µ, ξ).

with Dρ(µ, ξ) =
∑
c∈C

f∗c (µc) + g∗(µ) + 〈ξ, Aµ〉 − 1
2ρ‖Aµ‖

2
2.

Note that we have ∇d(ξ) = Aµξ with µξ = arg min
ξ
Dρ(µ, ξ).

Combining an inexact dual Lagrangian method with a subsolver A
At epoch t:

Maximize Dρ partially w.r.t. µ using a fixed number of steps of a
(stochastic) linearly convergent algorithm A to get µ̂t from the µ̂t−1.

Take an inexact gradient step on d with ξt+1 = ξt − 1
L
Aµ̂t



Main technical lemma

Let ξt (resp. µ̂t) the value of ξ (resp. µ) at the end of epoch t

Let ∆̂t := max
µ

Dρ(µ, ξt)−Dρ(µ̂t, ξt) and Γt := d(ξt)− d(ξ∗).

Let ∆0
t := max

µ
Dρ(µ, ξt)−Dρ(µt0, ξt)

If algorithm A used at epoch t to maximize Dρ(µ, ξ) w.r.t. µ is such that

∃β ∈ (0, 1), E[∆̂t] ≤ β E[∆0
t ] ,

then ∃ κ ∈ (0, 1) characterizing d and ∃ C > 0 such that, if µt0 = µ̂t−1,∥∥∥∥E[∆̂Tex ]
E[ΓTex ]

∥∥∥∥ ≤ C λmax(β)Tex

∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥ ,

where λmax(β) is the largest eigenvalue of the matrix M(β) =
[

6β 3β
1 1−κ

]



Main theoretical result: linear convergence in the dual

Let A be an iterative algorithm used to solve partially max
µ

Dρ(µ, ξ).

Let ξt (resp. µ̂t) the value of ξ (resp. µ) at the end of epoch t

Let ∆̂t := max
µ

Dρ(µ, ξt)−Dρ(µ̂t, ξt) and Γt := d(ξt)− d(ξ∗).

Proposition: If
A is a linearly convergent algorithm
at epoch t, A is initialized with µ̂t−1 (→ use of warm-starts)
A is run for a fixed ahead Tin number of iteration at each epoch

then we have

∆̂t, Γt
a.s.−→ 0 linearly

the residuals ‖Aµ̂t‖22
a.s.−→ 0 linearly

the smooth part of the objective a.s. converges linearly



Global linear convergence in the primal
Let P be the relaxed primal objective

P (w) := FL
(
Ψᵀw

)
+ λ

2 ‖w‖
2
2, with FL(θ) := max

µ∈L
〈θ, µ〉+Happrox(µ).

Corollary

Let ŵt = − 1
λ

Ψµ̂t.

If
A is a linearly convergent algorithm and

the function µ 7→ −Happrox(µ) + 1
2ρ‖Aµ‖

2
2 is strongly convex,

then P (ŵt)− P (w?) converges to 0 linearly a.s.

Since a fixed nb of inner iterations are done at each epoch, the linear
convergence is as a function of the total number of clique updates.



Related work
A lot of work on approximate inference for CRFs:

Komodakis et al. (2007); Sontag et al. (2008); Savchynskyy et al. (2011)
Learning method going beyond saddle formulations:

Meshi et al. (2010); Hazan and Urtasun (2010); Lacoste-Julien et al. (2013)
Learning in the dual for structured SVMs with only clique-wise updates:

With relaxation + smoothing of the linear constraints Meshi et al. (2015)
and using block coordinate Frank-Wolfe (BCFW) or block coordinate ascent.
With multiplier and a greedy primal dual algorithm, Yen et al. (2016) show a
global linear convergence result in the dual.

Convergence rates for approximate gradient descent
Schmidt et al. (2011); Devolder et al. (2014); Lan and Monteiro (2016); Lin
et al. (2017)

However,
the connexion with SDCA was not made,
there was no linear convergence guarantee in the primal



Experiments: Algorithms

SoftBCFW Stochastic block coordinate Frank-Wolfe + penalty method
(Meshi et al., 2015)

SoftSDCA Stochastic block coordinate prox ascent + penalty method
GDMM Dual decomposed learning with factorwise oracle

(Yen et al., 2016)
IDAL Our algorithm



Datasets

Gaussian mixture Potts model

10× 10 grid graph with 5 classes
gaussian features in R10

(wτ1 ∈ R10×5, wτ2 ∈ R5×5)
50 training grids

Semantic segmentation of images

MSRC-21 dataset (Shotton et al., 2006)
21 classes
50 features (wτ1 ∈ R50×21, wτ2 ∈ R21×21)
335 training images



Results for Gaussian mixture Potts model (λ = 10, ρ = 1)

Bound on duality gap Gap on marginalization constraints
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Result on segmentation dataset, max margin variant (λ = 1, ρ = 0.1)

Bound on duality gap Gap on marginalization constraints
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Future work

How do we get rid of these relaxations?
Do we need higher order marginals?
Is there a better divergence for D(p0(y|x)‖pθ(y|x)) than KL?
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