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Schedule
● The problem and applications.
● An introduction to discrete CRF.
● Faster inference and learning for CRF.
● Learning feature representations by CNN.
● Results and Demo.



  

Problem: Semantic Segmentation



  

Applications
● Additional constraints for 3D reconstruction.
● Self-driving cars.
● 3D semantic maps.



  

Discrete CRF
● Conditional random field is an undirected 

graphical model with discrete random variables.
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yi is a discrete random variable

x is a random vector in a high 
dimensional image manifold



  

Discrete CRF
● Definition: A conditional distribution
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Clique types:

, ,



  

Inference of CRF
● Maximum a posterior inference: 
● Probabilistic/marginal inference: 

MAP prediction marginalsimage
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Parameter Estimation in CRF
● Inverse problem: Given samples of (x, y), to 

estimate model parameters w.
- Maximum likelihood estimation

- Max-margin learning
Issue: computing gradients need marginal inference

Issue: computing gradients need MAP inference



  

Inference-Free Parameter Estimation
● Can we learn parameters without performing 

inference at each iteration?
● Yes! Working on dual. For MLE, we assume

- linear function w.r.t. w:
  then 
- 
  

is well approximated by its variational relaxation.



  

Variational Relaxation



  

Relaxed CRF Learning
● It's equivalent to work on the dual.

Dual:

Primal:

N.B.: consider all graphs as a single graph with multiple 
connected components.



  

Relaxed CRF Learning 
● The local polytope can be decomposed as a 

product of simplices and hyperplanes.

+=

● The dual augmented Lagrangian factor over cliques: 



  

Relaxed CRF Learning with Block 
Proximal Methods 

● The relaxed CRF learning can be solved by 
proximal block coordinate method of multipliers.

Method MLE / Max-Margin Primal / Dual Convergence Inference Oracle

Blend. (Meshi 10) Max-Margin Primal O(1/eps) Graph-wise MAP (10 iters)

Blend. (Hazan 10) MLE Primal O(1/eps) Graph-wise Marg. (10 iters) 

BCFW (Lacoste-
Julien 12)

Max-Margin Dual O(1/eps) Graph-wise MAP

BCFW (Tang 16) MLE Dual O(1/eps) Graph-wise Marg.

BCFW (Meshi 15) Max-Margin Dual O(1/eps) Clique-wise MAP

Prox-BCMM / 
Prox-SDCA (ours)

MLE Dual O(log 1/eps) Clique-wise Marg.



  

Relaxed CRF Learning with Block 
Proximal Methods
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Relaxed CRF Learning with Block 
Proximal Methods

● Take-home messages:
- If inference is expensive, try relaxed CRF.
- If your problem cares about marginals, use MLE 
with Prox-BCMM; 
- If MAP inference is the goal, use max-margin 
with block-coordinte Frank-Wolfe algorithm.



  

Experiments on Rue-Monge Dataset
● 290196 points for training, 276529 points for testing.
● 7 classes: window, wall, balcony, door, roof, sky and shop.
● Features: RGB + Normal + Height + Depth + Spin image.



  

Experiments on Rue-Monge Dataset

MAP prediction IoU: 59.2%



  

Experiments on Rue-Monge Dataset

Ground truth



  

Learning Feature Representations:
A Deep Learning Approach

Feature extractor
(no parameters) Classifier

Feature extractor + Classifier

x f(x) y

x y

Classical machine learning

Deep machine learning



  

Convolutional Neural Networks (CNN) 
● A case study: VGG16-Net



  

Fully Convolutional Networks (FCN)
● Trick: Treat dense connection layers as 

convolutional layers.

4096x7x7x256

   K    H W  C
40

96

256

Each filter is 
7x7x256

Vec



  

FCN
● Computation sharing: If input image is 512x512, the 

output is 10x10 (due to 5 max poolings, 16-7+1). It 
classifies 100 patches in a single feedforward pass. 

224 / 32 = 7

512 / 32 = 16



  

FCN
● The 100 patches are chosen by max poolings, which give 

high activations. Pixelwise prediction is obtained by 
upsampling (e.g. bilinear interpolation or deconvolution). 



  

Results on CityScapes Dataset
● Street images from 50 cities. 19 classes involved. 

2975/500/1525 images for train/val/test. 
● Baseline: FCN8s
● Our: FCN8s + additional convolutions on top of 

the pixelwise prediction to capture context 
information. A simple experiment to test our 
higher order CRF model.  



  

Results on CityScapes Dataset
● IoU: FCN8s 56.3%; ContextNet 62.5%



  

Results on CityScapes Dataset

Image

GT

Base

Context



  

Results on CityScapes Dataset
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Brainstorming

Image credit: Jiajun Wu



  

Demo
● Rue-Monge 3D results
● Cityscapes video (trained with LRR by Golnaz 16)

Thank you!

file:///home/hushell/working/3d_urban/Jan13_Nice/monge428_3D_3DCRF.ply
file:///home/hushell/working/3d_urban/Jan13_Nice/video.mpg
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