Acceleration and Regularization of Probabilistic Deep Learning with Variational Formulations

Xu (Shell) Hu^{1,2}

Supervised by Guillaume Obozinski¹, Nikos Komodakis¹, Renaud Marlet¹, Mathieu Aubry¹ and Sven Oesau²

¹École des Ponts ParisTech ²Centre Scientifique et Technique du Bâtiment

Context and Objectives

- A computer vision problem: semantic segmentation.
 Assign a semantic label (from a finite set) to every pixel in the image or every 3D point in 3D reconstructed data.
- Applications:

Digitize existing buildings

Autonomous driving

Image manipulation

Challenges

- Computational issue:
 - There are tens of billions of pixels and 3D points.
 - Each point labeling is a classification problem.
 - We have to take into account the structure among the points.

• **Data issue**: only very few pixels/points are annotated (a lot of human labor).

Machine Learning Methods

• Conditional random fields:

$$p(y|x;w) = \frac{1}{Z(x;w)} \exp\left(\sum_{a \in \mathcal{A}} \sum_{c \in G_a} \theta_c(y_c, x; w_a)\right)$$

• Bayesian deep neural networks:

Main Results

- For *computational issue*, we proposed **acceleration** methods:
 <u>SDCA-powered inexact dual augmented Lagrangian method</u> for fast CRF learning at AISTATS 2018.
 - Amortized conditional random fields in submission.
- 2. For *small data issue*: we proposed **regularization** methods:
 - <u>Variational information distillation for transfer learning</u> at NeurIPS-CL 2018.
 - <u>β-BNN: A Rate-Distortion Perspective on Bayesian Neural</u> <u>Networks</u> at NeurIPS-BDL 2018.

(Please stop by our poster for technical details.)

